Stearoyl-CoA Desaturase Genes in Lipid Metabolism

Nonfiction, Health & Well Being, Medical, Medical Science, Genetics, Specialties, Internal Medicine, Endocrinology & Metabolism
Cover of the book Stearoyl-CoA Desaturase Genes in Lipid Metabolism by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781461479697
Publisher: Springer New York Publication: August 15, 2013
Imprint: Springer Language: English
Author:
ISBN: 9781461479697
Publisher: Springer New York
Publication: August 15, 2013
Imprint: Springer
Language: English

Obesity and diabetes develop as a complex result of genetic, metabolic and environmental factors and are characterized by increased lipogenesis and lipid accumulation in many tissues. Stearoyl-CoA desaturase (SCD) genes are a critical regulator of lipogenesis and catalyzes the synthesis of monounsaturated fatty acids (MUFA), mainly oleoyl- (18:1n9) and palmitoleoyl-CoA (16:1n7). These MUFAs are the major fatty acid substrates for the synthesis of triglycerides, cholesterol esters, wax esters and membrane phospholipids. There are 4 SCD isoforms (SCD1-4) in mice and two (hSCD1 and hSCD5) expressed in humans.   At first glance, stearoyl-CoA desaturase enzyme would be considered a housekeeping enzyme because it synthesizes oleate a well-known fatty acid that is abundant in many dietary sources. However numerous studies have shown that SCD is a very highly regulated enzyme that features in so many physiological processes ranging from fat differentiation, carbohydrate and fat metabolism, inflammation and cancer. The editor’s studies using stearoyl-CoA desaturase knockout (SCD1-/-) mice and studies of other investigators using pharmacological approaches to reduce SCD1 expression in mouse tissues have all established that the expression of SCD1 gene isoform represents a key step in partitioning of lipids between storage and oxidation. High SCD expression favors fat storage leading to obesity while reduced SCD expression favors fat burning and leanness. Although these studies clearly illustrated that SCD1 expression is involved in the development of obesity and insulin resistance, questions remain in the elucidation of the mechanisms involved and role of SCD1.   This book includes chapters by leading researchers on SCD Genes in the brain, heart, muscle, liver metabolism, Colitis, and more. ​

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Obesity and diabetes develop as a complex result of genetic, metabolic and environmental factors and are characterized by increased lipogenesis and lipid accumulation in many tissues. Stearoyl-CoA desaturase (SCD) genes are a critical regulator of lipogenesis and catalyzes the synthesis of monounsaturated fatty acids (MUFA), mainly oleoyl- (18:1n9) and palmitoleoyl-CoA (16:1n7). These MUFAs are the major fatty acid substrates for the synthesis of triglycerides, cholesterol esters, wax esters and membrane phospholipids. There are 4 SCD isoforms (SCD1-4) in mice and two (hSCD1 and hSCD5) expressed in humans.   At first glance, stearoyl-CoA desaturase enzyme would be considered a housekeeping enzyme because it synthesizes oleate a well-known fatty acid that is abundant in many dietary sources. However numerous studies have shown that SCD is a very highly regulated enzyme that features in so many physiological processes ranging from fat differentiation, carbohydrate and fat metabolism, inflammation and cancer. The editor’s studies using stearoyl-CoA desaturase knockout (SCD1-/-) mice and studies of other investigators using pharmacological approaches to reduce SCD1 expression in mouse tissues have all established that the expression of SCD1 gene isoform represents a key step in partitioning of lipids between storage and oxidation. High SCD expression favors fat storage leading to obesity while reduced SCD expression favors fat burning and leanness. Although these studies clearly illustrated that SCD1 expression is involved in the development of obesity and insulin resistance, questions remain in the elucidation of the mechanisms involved and role of SCD1.   This book includes chapters by leading researchers on SCD Genes in the brain, heart, muscle, liver metabolism, Colitis, and more. ​

More books from Springer New York

Cover of the book Living with Water by
Cover of the book Cluster Analysis in Neuropsychological Research by
Cover of the book Altruism in Cross-Cultural Perspective by
Cover of the book Atlas of Neurosurgical Anatomy by
Cover of the book Children in Pain by
Cover of the book Raynaud’s Phenomenon by
Cover of the book A Business Perspective on Industry and Health Care by
Cover of the book The Sun and How to Observe It by
Cover of the book Knowledge Coupling by
Cover of the book Geolocation of RF Signals by
Cover of the book Island Disputes and Maritime Regime Building in East Asia by
Cover of the book Reviews of Environmental Contamination and Toxicology by
Cover of the book Gene Therapy for HIV and Chronic Infections by
Cover of the book Physics of Collisionless Shocks by
Cover of the book Atlas of Endocrine Pathology by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy