Statistics and Scaling in Turbulent Rayleigh-Bénard Convection

Nonfiction, Science & Nature, Science, Physics, Thermodynamics, Technology, Engineering, Mechanical
Cover of the book Statistics and Scaling in Turbulent Rayleigh-Bénard Convection by Emily S.C. Ching, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Emily S.C. Ching ISBN: 9789814560238
Publisher: Springer Singapore Publication: August 13, 2013
Imprint: Springer Language: English
Author: Emily S.C. Ching
ISBN: 9789814560238
Publisher: Springer Singapore
Publication: August 13, 2013
Imprint: Springer
Language: English

This Brief addresses two issues of interest of turbulent Rayleigh-Bénard convection. The first issue is the characterization and understanding of the statistics of the velocity and temperature fluctuations in the system. The second issue is the revelation and understanding of the nature of the scaling behavior of the velocity temperature structure functions. The problem under the Oberbeck-Boussinesq approximation is formulated. The statistical tools, including probability density functions (PDF) and conditional statistics, for studying fluctuations are introduced, and implicit PDF formulae for fluctuations obeying certain statistical symmetries are derived. Applications of  these PDF formulae to study the fluctuations in turbulent Rayleigh-Bénard convection are then discussed. The phenomenology of the different types of scaling behavior: the Bolgiano-Obhukov scaling behavior when buoyancy effects are significant and the Kolmogorov-Obukhov-Corrsin scaling behavior when they are not, is introduced. A crossover between the two types of scaling behavior is expected to occur at the Bolgiano length scale above which buoyancy is important. The experimental observations are reviewed. In the central region of the convective cell, the Kolmogorov-Obukhov-Corrsin scaling behavior has been observed. On the other hand, the Bolgiano-Obukhov scaling remains elusive only until recently. By studying the dependence of the conditional temperature structure functions on the locally averaged thermal dissipation rate, evidence for the Bolgiano-Obukhov scaling has recently been found near the bottom plate. The different behaviors observed in the two regions could be attributed to the different size of the Bolgiano scale. What physics determines the relative size of the Bolgiano scale remains to be understood. The Brief is concluded by a discussion of these outstanding issues.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This Brief addresses two issues of interest of turbulent Rayleigh-Bénard convection. The first issue is the characterization and understanding of the statistics of the velocity and temperature fluctuations in the system. The second issue is the revelation and understanding of the nature of the scaling behavior of the velocity temperature structure functions. The problem under the Oberbeck-Boussinesq approximation is formulated. The statistical tools, including probability density functions (PDF) and conditional statistics, for studying fluctuations are introduced, and implicit PDF formulae for fluctuations obeying certain statistical symmetries are derived. Applications of  these PDF formulae to study the fluctuations in turbulent Rayleigh-Bénard convection are then discussed. The phenomenology of the different types of scaling behavior: the Bolgiano-Obhukov scaling behavior when buoyancy effects are significant and the Kolmogorov-Obukhov-Corrsin scaling behavior when they are not, is introduced. A crossover between the two types of scaling behavior is expected to occur at the Bolgiano length scale above which buoyancy is important. The experimental observations are reviewed. In the central region of the convective cell, the Kolmogorov-Obukhov-Corrsin scaling behavior has been observed. On the other hand, the Bolgiano-Obukhov scaling remains elusive only until recently. By studying the dependence of the conditional temperature structure functions on the locally averaged thermal dissipation rate, evidence for the Bolgiano-Obukhov scaling has recently been found near the bottom plate. The different behaviors observed in the two regions could be attributed to the different size of the Bolgiano scale. What physics determines the relative size of the Bolgiano scale remains to be understood. The Brief is concluded by a discussion of these outstanding issues.

More books from Springer Singapore

Cover of the book Shifts in the Field of Mathematics Education by Emily S.C. Ching
Cover of the book Anti-reflection and Light Trapping in c-Si Solar Cells by Emily S.C. Ching
Cover of the book Moving the Masses: Bus-Rapid Transit (BRT) Policies in Low Income Asian Cities by Emily S.C. Ching
Cover of the book German-Australian Encounters and Cultural Transfers by Emily S.C. Ching
Cover of the book Design, Fabrication and Electrochemical Performance of Nanostructured Carbon Based Materials for High-Energy Lithium–Sulfur Batteries by Emily S.C. Ching
Cover of the book Mathematical and Statistical Applications in Life Sciences and Engineering by Emily S.C. Ching
Cover of the book Emerging Research in Computing, Information, Communication and Applications by Emily S.C. Ching
Cover of the book A Companion to Research in Teacher Education by Emily S.C. Ching
Cover of the book Treatment of Non-vitamin K Antagonist Oral Anticoagulants by Emily S.C. Ching
Cover of the book Foreign Language Learning Anxiety in China by Emily S.C. Ching
Cover of the book Applied Analysis of Growth, Trade, and Public Policy by Emily S.C. Ching
Cover of the book Pacific Rim Objective Measurement Symposium (PROMS) 2015 Conference Proceedings by Emily S.C. Ching
Cover of the book High-Temperature H2S Removal from IGCC Coarse Gas by Emily S.C. Ching
Cover of the book Application of Lasers in Manufacturing by Emily S.C. Ching
Cover of the book English Education in Oman by Emily S.C. Ching
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy