Statistical Analysis for High-Dimensional Data

The Abel Symposium 2014

Nonfiction, Science & Nature, Mathematics, Counting & Numeration, Statistics
Cover of the book Statistical Analysis for High-Dimensional Data by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319270999
Publisher: Springer International Publishing Publication: February 16, 2016
Imprint: Springer Language: English
Author:
ISBN: 9783319270999
Publisher: Springer International Publishing
Publication: February 16, 2016
Imprint: Springer
Language: English

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014.

The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.

Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book features research contributions from The Abel Symposium on Statistical Analysis for High Dimensional Data, held in Nyvågar, Lofoten, Norway, in May 2014.

The focus of the symposium was on statistical and machine learning methodologies specifically developed for inference in “big data” situations, with particular reference to genomic applications. The contributors, who are among the most prominent researchers on the theory of statistics for high dimensional inference, present new theories and methods, as well as challenging applications and computational solutions. Specific themes include, among others, variable selection and screening, penalised regression, sparsity, thresholding, low dimensional structures, computational challenges, non-convex situations, learning graphical models, sparse covariance and precision matrices, semi- and non-parametric formulations, multiple testing, classification, factor models, clustering, and preselection.

Highlighting cutting-edge research and casting light on future research directions, the contributions will benefit graduate students and researchers in computational biology, statistics and the machine learning community.

More books from Springer International Publishing

Cover of the book Microbes for Legume Improvement by
Cover of the book Bent Functions by
Cover of the book Tidal Streams in the Local Group and Beyond by
Cover of the book Sequential Learning and Decision-Making in Wireless Resource Management by
Cover of the book Global Business Value Innovations by
Cover of the book Finance in Central and Southeastern Europe by
Cover of the book Currency Wars by
Cover of the book State Fragility and State Building in Africa by
Cover of the book Engineering Secure Software and Systems by
Cover of the book The Alkali Metal Ions: Their Role for Life by
Cover of the book International Research, Policy and Practice in Teacher Education by
Cover of the book Prioritising Business Processes by
Cover of the book Advances in Human Factors in Energy: Oil, Gas, Nuclear and Electric Power Industries by
Cover of the book Technology Entrepreneurship by
Cover of the book The Secular in South, East, and Southeast Asia by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy