Spectral Methods in Chemistry and Physics

Applications to Kinetic Theory and Quantum Mechanics

Nonfiction, Science & Nature, Science, Chemistry, Physical & Theoretical, Physics, Mathematical Physics
Cover of the book Spectral Methods in Chemistry and Physics by Bernard Shizgal, Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Bernard Shizgal ISBN: 9789401794541
Publisher: Springer Netherlands Publication: January 7, 2015
Imprint: Springer Language: English
Author: Bernard Shizgal
ISBN: 9789401794541
Publisher: Springer Netherlands
Publication: January 7, 2015
Imprint: Springer
Language: English

This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficients in gases and other gas dynamical problems based on spectral and pseudospectral solutions of the Boltzmann equation. Radiative transfer in astrophysics and atmospheric science, and applications to space physics are discussed.  The relaxation of initial non-equilibrium distributions to equilibrium for several different systems is studied with the Boltzmann and Fokker-Planck equations.
The eigenvalue spectra of the linear operators in the Boltzmann, Fokker-Planck and Schrödinger equations are studied with spectral and pseudospectral methods based on non-classical orthogonal polynomials.
The numerical methods referred to as the Discrete Ordinate Method, Differential Quadrature, the Quadrature Discretization Method, the Discrete Variable Representation, the Lagrange Mesh Method, and others are discussed and compared.
MATLAB codes are provided for most of the numerical results reported in the book - see Link under 'Additional Information' on the the right-hand column.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book is a pedagogical presentation of the application of spectral and pseudospectral methods to kinetic theory and quantum mechanics. There are additional applications to astrophysics, engineering, biology and many other fields. The main objective of this book is to provide the basic concepts to enable the use of spectral and pseudospectral methods to solve problems in diverse fields of interest and to a wide audience. While spectral methods are generally based on Fourier Series or Chebychev polynomials, non-classical polynomials and associated quadratures are used for many of the applications presented in the book. Fourier series methods are summarized with a discussion of the resolution of the Gibbs phenomenon. Classical and non-classical quadratures are used for the evaluation of integrals in reaction dynamics including nuclear fusion, radial integrals in density functional theory, in elastic scattering theory and other applications. The subject matter includes the calculation of transport coefficients in gases and other gas dynamical problems based on spectral and pseudospectral solutions of the Boltzmann equation. Radiative transfer in astrophysics and atmospheric science, and applications to space physics are discussed.  The relaxation of initial non-equilibrium distributions to equilibrium for several different systems is studied with the Boltzmann and Fokker-Planck equations.
The eigenvalue spectra of the linear operators in the Boltzmann, Fokker-Planck and Schrödinger equations are studied with spectral and pseudospectral methods based on non-classical orthogonal polynomials.
The numerical methods referred to as the Discrete Ordinate Method, Differential Quadrature, the Quadrature Discretization Method, the Discrete Variable Representation, the Lagrange Mesh Method, and others are discussed and compared.
MATLAB codes are provided for most of the numerical results reported in the book - see Link under 'Additional Information' on the the right-hand column.

More books from Springer Netherlands

Cover of the book Manual of Peritoneal Dialysis by Bernard Shizgal
Cover of the book Modern Marketing Communications by Bernard Shizgal
Cover of the book Collected Papers II by Bernard Shizgal
Cover of the book Stress Response Pathways in Cancer by Bernard Shizgal
Cover of the book Space, Time and Culture by Bernard Shizgal
Cover of the book Hermeneutics and Science by Bernard Shizgal
Cover of the book Plant Membranes by Bernard Shizgal
Cover of the book Ibero-American Bioethics by Bernard Shizgal
Cover of the book The United Nations and the Peaceful Unification of Korea by Bernard Shizgal
Cover of the book British Stratigraphy by Bernard Shizgal
Cover of the book Translocal Ruralism by Bernard Shizgal
Cover of the book Mortality and Causes of Death in 20th-Century Ukraine by Bernard Shizgal
Cover of the book Process Theories by Bernard Shizgal
Cover of the book International Handbook of Migration and Population Distribution by Bernard Shizgal
Cover of the book Citizenship and Democracy in Further and Adult Education by Bernard Shizgal
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy