Space Shuttle NASA Mission Reports: 1997 Missions, STS-81, STS-82, STS-83, STS-84, STS-94, STS-85, STS-86, STS-87

Nonfiction, Science & Nature, Science, Physics, Astronomy, Other Sciences, History
Cover of the book Space Shuttle NASA Mission Reports: 1997 Missions, STS-81, STS-82, STS-83, STS-84, STS-94, STS-85, STS-86, STS-87 by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781465701909
Publisher: Progressive Management Publication: January 16, 2012
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781465701909
Publisher: Progressive Management
Publication: January 16, 2012
Imprint: Smashwords Edition
Language: English

These official final program mission reports issued by the NASA Johnson Space Center cover missions in 1997: STS-81, STS-82, STS-83, STS-84, STS-94, STS-85, STS-86, and STS-87. In these thorough reports, with information and specifics not available on NASA website mission descriptions, each orbiter system is reviewed in detail along with technical information on performance and anomalies.

STS-81: The primary objectives of this flight were to perform the fifth rendezvous and docking with the Russian Mir Space Station and perform a logistics resupply and the exchange of a Mir Astronaut. A double Spacehab module carried science experiments and hardware (including the Biorack facility consisting of two incubators, a glovebox, and two refrigerators as well as a refrigerator/freezer), the Space Acceleration Measurements System (SAMS), Risk Mitigation Experiments (RMEs) and Russian logistics in support of the Phase 1 Program requirements.

STS-82: The primary objectives of the STS-82 flight were to perform the operations necessary to fulfill the second on-orbit servicing requirements for the HST. The servicing tasks included installation of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), installation of the Space Telescope Imaging Spectrograph (STIS), replacement of the Data Interface Unit (DIU) 2 as well as the Engineering/Science Tape Recorder (ESTR)-2.

STS-83: The primary objective of the STS-83 flight was to successfully perform the planned operations of the First Microgravity Science Laboratory (MSL-1).

STS-84: The primary objective of the STS-84 flight was to rendezvous and dock with the Mir Space Station, and perform the exchange of a Mir astronaut. A double Spacehab module and the crew compartment carried science experiments including Protein Crystal Growth - Single Locker Thermal Enclosure System (PCG-STES); Liquid Motion Experiment (LME) hardware; Risk Mitigation Experiments (RME's) including the Cosmic Radiation Effect and Activation Monitor (CREAM), Electrolysis Performance Improvement Concept Study Experiment (EPICS), and the Radiation Monitoring Experiment -III (RME-III); and Russian logistics in support of the Phase 1 Program requirements.

STS-94: The primary objective of the STS-94 flight was to successfully perform the planned operations of the First Microgravity Science Laboratory (MSL-1).

STS-85: The primary objective of the STS-85 flight were to successfully accomplish science objectives by operating the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS), to launch and operate in orbit a Manipulator Flight Demonstration (MFD), and to perform operations on the Technology Applications and Science (TAS-01).

STS-86: The primary objectives of the STS-86 flight were to rendezvous and dock with the Mir Space Station, and perform the exchange of a Mir astronaut.

STS-87: The primary objectives of the STS-87 flight were to successfully perform the operations necessary to fulfill the requirements of the United States Microgravity Payload -4 (USMP-4) and SPARTAN-201.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

These official final program mission reports issued by the NASA Johnson Space Center cover missions in 1997: STS-81, STS-82, STS-83, STS-84, STS-94, STS-85, STS-86, and STS-87. In these thorough reports, with information and specifics not available on NASA website mission descriptions, each orbiter system is reviewed in detail along with technical information on performance and anomalies.

STS-81: The primary objectives of this flight were to perform the fifth rendezvous and docking with the Russian Mir Space Station and perform a logistics resupply and the exchange of a Mir Astronaut. A double Spacehab module carried science experiments and hardware (including the Biorack facility consisting of two incubators, a glovebox, and two refrigerators as well as a refrigerator/freezer), the Space Acceleration Measurements System (SAMS), Risk Mitigation Experiments (RMEs) and Russian logistics in support of the Phase 1 Program requirements.

STS-82: The primary objectives of the STS-82 flight were to perform the operations necessary to fulfill the second on-orbit servicing requirements for the HST. The servicing tasks included installation of the Near Infrared Camera and Multi-Object Spectrometer (NICMOS), installation of the Space Telescope Imaging Spectrograph (STIS), replacement of the Data Interface Unit (DIU) 2 as well as the Engineering/Science Tape Recorder (ESTR)-2.

STS-83: The primary objective of the STS-83 flight was to successfully perform the planned operations of the First Microgravity Science Laboratory (MSL-1).

STS-84: The primary objective of the STS-84 flight was to rendezvous and dock with the Mir Space Station, and perform the exchange of a Mir astronaut. A double Spacehab module and the crew compartment carried science experiments including Protein Crystal Growth - Single Locker Thermal Enclosure System (PCG-STES); Liquid Motion Experiment (LME) hardware; Risk Mitigation Experiments (RME's) including the Cosmic Radiation Effect and Activation Monitor (CREAM), Electrolysis Performance Improvement Concept Study Experiment (EPICS), and the Radiation Monitoring Experiment -III (RME-III); and Russian logistics in support of the Phase 1 Program requirements.

STS-94: The primary objective of the STS-94 flight was to successfully perform the planned operations of the First Microgravity Science Laboratory (MSL-1).

STS-85: The primary objective of the STS-85 flight were to successfully accomplish science objectives by operating the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere-Shuttle Pallet Satellite (CRISTA-SPAS), to launch and operate in orbit a Manipulator Flight Demonstration (MFD), and to perform operations on the Technology Applications and Science (TAS-01).

STS-86: The primary objectives of the STS-86 flight were to rendezvous and dock with the Mir Space Station, and perform the exchange of a Mir astronaut.

STS-87: The primary objectives of the STS-87 flight were to successfully perform the operations necessary to fulfill the requirements of the United States Microgravity Payload -4 (USMP-4) and SPARTAN-201.

More books from Progressive Management

Cover of the book Interwar Period (1919-1939) Officer Education: Model for the Future – Army War College, German Reichswehr and Kriegsakademie, North Africa Campaign, Overlord Campaign, Need to Focus on Operational Art by Progressive Management
Cover of the book Joint Force Cyberspace Component Command: Establishing Cyberspace Operations Unity of Effort for the Joint Force Commander – Cyberwar, Air Power Development in Operation Desert Storm by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: U.S. Marine Corps (USMC) Rifle Marksmanship Marine Corps Reference Publication (MCRP) 3-01A by Progressive Management
Cover of the book Iraq Handbook: Provincial Reconstruction Team (PRT) - Observations, Insights, and Lessons, including Provincial Data and Guide to Provinces by Progressive Management
Cover of the book Operational Risk Defined Through a Complex Operating Environment: U.S. Intervention in Somalia, Combined Joint Task Force Horn of Africa, Analysis of Environmental, Institutional, and Social Factors by Progressive Management
Cover of the book 21st Century U.S. Army Law of Land Warfare Manual (FM 27-10) - Rules, Principles, Hostilities, Prisoners of War, Wounded and Sick, Civilians, Occupation, War Crimes, Geneva Conventions by Progressive Management
Cover of the book Russia and NATO Ballistic Missile Defense: The European Phased Adaptive Approach Experience, 2009-2017, Obama Plan and BMD History, Response of Poland, Czech Republic, and Russia by Progressive Management
Cover of the book 21st Century Complete Guide to Biogas and Methane: Agricultural Recovery, Manure Digesters, AgSTAR, Landfill Methane, Greenhouse Gas Emission Reduction and Global Methane Initiative by Progressive Management
Cover of the book The Rationale of Political Assassinations: Context, Logic, Landscape and General Trends, Causes, Facilitators, Consequences, Policy Implications, Coups D'etat, Typologies, Targets, Heads of State by Progressive Management
Cover of the book The U.S. Counterterrorism Strategy: Addressing Radical Ideologies - Study Focusing on Al-Qaeda and ISIS Islamism and Violent Extremism, Evaluation of Preemptive and Preventive Approaches by Progressive Management
Cover of the book Human Space Flight Industrial Base in the Post-Space Shuttle/Constellation Environment: Industry Viability, NASA-Dependent HSF Suppliers, Sustainable HSF Supply Chain by Progressive Management
Cover of the book America's Small Manufacturers, Businesses and Entrepreneurs - Reports on Capital Access, Government Support, Manufacturing Extension Partnership (MEP) by Progressive Management
Cover of the book The United States Air Force in Southeast Asia: The Advisory Years to 1965 - Truman, Eisenhower, Kennedy, Ranch Hand, Diem, Interdiction, Gulf of Tonkin, Johnson, Diffusion of Air Assets by Progressive Management
Cover of the book History of the Office of the Secretary of Defense, Volume Six: McNamara, Clifford, and the Burdens of Vietnam 1965 - 1969, Israel and the Middle East, North Korea, Dominican Republic by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Army Air and Missile Defense Operations - FM 44-100 (Value-Added Professional Format Series) by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy