Space Shuttle NASA Mission Reports: 1992 Missions, STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, STS-53

Nonfiction, Science & Nature, Science, Physics, Astronomy, Other Sciences, History
Cover of the book Space Shuttle NASA Mission Reports: 1992 Missions, STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, STS-53 by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781465875648
Publisher: Progressive Management Publication: January 9, 2012
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781465875648
Publisher: Progressive Management
Publication: January 9, 2012
Imprint: Smashwords Edition
Language: English

These official final program mission reports issued by the NASA Johnson Space Center cover missions in 1992: STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, and STS-53. In these thorough reports, with information and specifics not available on NASA website mission descriptions, each orbiter system is reviewed in detail along with technical information on performance and anomalies.

STS-42: The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). The crew for this forty-fifth Space Shuttle flight was Ronald J. Grabe, Col., USAF, Commander; Steven S. Oswald, Pilot; Norman E. Thagard, M.D., Mission Specialist 1 (Payload Commander); William F. Readdy, Mission Specialist 2; David C. Hilmers, Col., USMC, Mission Specialist 3; Roberta L. Bondar, Ph.D, Payload Specialist 1; and Ulf D. Merbold, Ph.D, Payload Specialist 2.

STS-45: The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads.

STS-49: The primary objectives of this flight were to perform the operations necessary to re-boost the International Telecommunications Satellite VI (INTELSAT VI) spacecraft and to fulfill the requirements of the Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) payload.

STS-50: The primary objective of the STS-50 flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML-1) payload. The secondary objectives of this flight were to perform the operations required by the Investigations into Polymer Membrane Processing (IPMP), and the Shuttle Amateur Radio Experiment II (SAREX-II) payloads.

STS-46: The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material Ill/Thermal Energy Management Processes 2A-3 (EOIM-III/TEMP 2A-3).

STS-47: The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload [containing 43 experiments of which 34 were provided by the Japanese National Space Development Agency (NASDA)]. The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-II (SAREX-II), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

STS-52: The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGE0S-II) and to perform operations of the United States Microgravity Payload-1 (USMP-1).

STS-53: The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-Ill (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-IA (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS).

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

These official final program mission reports issued by the NASA Johnson Space Center cover missions in 1992: STS-42, STS-45, STS-49, STS-50, STS-46, STS-47, STS-52, and STS-53. In these thorough reports, with information and specifics not available on NASA website mission descriptions, each orbiter system is reviewed in detail along with technical information on performance and anomalies.

STS-42: The primary objective of the STS-42 mission was to complete the objectives of the first International Microgravity Laboratory (IML-1). The crew for this forty-fifth Space Shuttle flight was Ronald J. Grabe, Col., USAF, Commander; Steven S. Oswald, Pilot; Norman E. Thagard, M.D., Mission Specialist 1 (Payload Commander); William F. Readdy, Mission Specialist 2; David C. Hilmers, Col., USMC, Mission Specialist 3; Roberta L. Bondar, Ph.D, Payload Specialist 1; and Ulf D. Merbold, Ph.D, Payload Specialist 2.

STS-45: The primary objective of this mission was to successfully perform the planned operations of the Atmospheric Laboratory for Applications and Science-1 (ATLAS-1) and the Shuttle Solar Backscatter Ultraviolet Instrument (SSBUV) payloads.

STS-49: The primary objectives of this flight were to perform the operations necessary to re-boost the International Telecommunications Satellite VI (INTELSAT VI) spacecraft and to fulfill the requirements of the Assembly of Station by Extravehicular Activity (EVA) Methods (ASEM) payload.

STS-50: The primary objective of the STS-50 flight was to successfully perform the planned operations of the United States Microgravity Laboratory (USML-1) payload. The secondary objectives of this flight were to perform the operations required by the Investigations into Polymer Membrane Processing (IPMP), and the Shuttle Amateur Radio Experiment II (SAREX-II) payloads.

STS-46: The primary objective of this flight was to successfully deploy the European Retrievable Carrier (EURECA) payload and perform the operations of the Tethered Satellite System-1 (TSS-1) and the Evaluation of Oxygen Interaction with Material Ill/Thermal Energy Management Processes 2A-3 (EOIM-III/TEMP 2A-3).

STS-47: The primary objective of the STS-47 flight was to successfully perform the planned operations of the Spacelab-J (SL-J) payload [containing 43 experiments of which 34 were provided by the Japanese National Space Development Agency (NASDA)]. The secondary objectives of this flight were to perform the operations of the Israeli Space Agency Investigation About Hornets (ISAIAH) payload, the Solid Surface Combustion Experiment (SSCE), the Shuttle Amateur Radio Experiment-II (SAREX-II), and the Get-Away Special (GAS) payloads. The Ultraviolet Plume Instrument (UVPI) was flown as a payload of opportunity.

STS-52: The primary objectives of this flight were to successfully deploy the Laser Geodynamic Satellite (LAGE0S-II) and to perform operations of the United States Microgravity Payload-1 (USMP-1).

STS-53: The primary objective of this flight was to successfully deploy the Department of Defense 1 (DOD-1) payload. The secondary objectives of this flight were to perform the operations required by the Glow Experiment/Cryogenic Heat Pipe Experiment Payload (GCP); the Hand-Held, Earth-Oriented, Real-time, Cooperative, User-Friendly, Location-Targeting and Environmental System (HERCULES); the Space Tissue Loss (STL); the Battlefield Laser Acquisition Sensor Test (BLAST); the Radiation Monitoring Equipment-Ill (RME-III); the Microcapsules in Space-1 (MIS-1); the Visual Function Tester-2 (VFT-2); the Cosmic Radiation Effects and Activation Monitor (CREAM); the Clouds Logic to Optimize Use of Defense Systems-IA (CLOUDS-1A); the Fluids Acquisition and Resupply Experiment (FARE); and the Orbital Debris Radar Calibration Spheres (ODERACS).

More books from Progressive Management

Cover of the book From SAC To STRATCOM: The Origins of Unified Command Over Nuclear Forces - Strategic Air Command, Carrier Bomber Debate, LeMay, Spaatz, Kenney, Admirals Revolt, Goldwater-Nichols Act, Cold War End by Progressive Management
Cover of the book Damn the Torpedoes: A Short History of U.S. Naval Mine Countermeasures, 1777-1991 - Farragut, Civil War, Minecraft, Wonsan, Minehunting, Minesweeping, Bushnell, Fulton, World War II, Vietnam, Iran by Progressive Management
Cover of the book Atomic Shield: A History of the United States Atomic Energy Commission (AEC) - Volume II, 1947-1952 - Terrible Responsibility, Call to Arms, Nuclear Arsenal, Quest for the Super (Hydrogen Bomb) by Progressive Management
Cover of the book The Story of Self-Repairing Flight Control Systems: NASA and Air Force Partnership to Test SRFCS Damage Adaptive Technology, Intelligent Flight Control System by Progressive Management
Cover of the book 2016 Perspectives on Nuclear Deterrence: USSTRATCOM Strategic Command Symposium - Enduring Value of Nuclear Weapons, Force Numbers Matter, Strong 21st Century Deterrent Need, China, Iran, North Korea by Progressive Management
Cover of the book Avoiding a Nuclear Catastrophe: WMD Weapons Threat from North Korea, Iran, Terrorists, Russia, China, Treaties, Role of Ballistic Missile Defense (BMD), Strengthening the Air Force Nuclear Enterprise by Progressive Management
Cover of the book Gulf War Logistics: Theory Into Practice - Desert Shield and Storm, Army Logistics from Vietnam to AirLand Battle, Ramifications of Schwarzkopf's Decision, Tactical Airlift, Ground Transportation by Progressive Management
Cover of the book 2011 Weapon Systems of the U.S. Army: Comprehensive Review of Major Army Acquisition Programs with Program Status, Contractor, Teaming Arrangements, and Critical Interdependencies by Progressive Management
Cover of the book Analysis of Foreign Military Sales (FMS) in U.S. Army Acquisition Programs - History from World War I and II, Truman Doctrine, Who Controls FMS, TOW Procurement, Javelin Missile, Monetary Value by Progressive Management
Cover of the book Army National Guard (ARNG) Special Forces (SF) Units: The Standard and the Future - Special Operations for Unconventional Warfare, Core Competencies, Soldier's Personal Perspective by Progressive Management
Cover of the book 21st Century Wegener’s Granulomatosis Sourcebook: Clinical Data for Patients, Families, and Physicians - Diagnosis, Testing, Treatment, Drugs, Vasculitis and Related Autoimmune Diseases by Progressive Management
Cover of the book Deterrence Theory in the Contemporary Operating Environment: Case Studies of U.S. and North Korea, India and Pakistan Standoff and Kargil War, Libyan Bombing, Iraq, and Bin Laden Embassy Bombings by Progressive Management
Cover of the book The Russian Military and the Georgia War: Lessons and Implications - Ukraine and Crimea, NATO and EU, Putin and Obama, S-300 Missiles, Yushchenko, Yanukovich, Abkhazia, South Ossetia by Progressive Management
Cover of the book Unmanned Aircraft Systems (UAS): Joint Doctrine for Unmanned Aircraft Systems: The Air Force and the Army Hold the Key to Success (UAVs, Remotely Piloted Aircraft) by Progressive Management
Cover of the book Life in the Shadow: An Examination of the Minor Foreign Relations of the DPRK - North Korea Modern Pariah State, Iran, Cuba, Europe, Syria, Africa, India, Strategic Direction, Allies and Partners by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy