Smart and Flexible Digital-to-Analog Converters

Nonfiction, Science & Nature, Technology, Electronics, Circuits
Cover of the book Smart and Flexible Digital-to-Analog Converters by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund, Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund ISBN: 9789400703476
Publisher: Springer Netherlands Publication: January 7, 2011
Imprint: Springer Language: English
Author: Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
ISBN: 9789400703476
Publisher: Springer Netherlands
Publication: January 7, 2011
Imprint: Springer
Language: English

Smart and Flexible Digital-to-Analog Converters proposes new concepts and implementations for flexibility and self-correction of current-steering digital-to-analog converters (DACs) which allow the attainment of a wide range of functional and performance specifications, with a much reduced dependence on the fabrication process.

DAC linearity is analysed with respect to the accuracy of the DAC unit elements. A classification is proposed of the many different current-steering DAC correction methods. The classification reveals methods that do not yet exist in the open literature. Further, this book systematically analyses self-calibration correction methods for the various DAC mismatch errors. For instance, efficient calibration of DAC binary currents is identified as an important missing method.

This book goes on to propose a new methodology for correcting mismatch errors of both nominally identical unary as well as scaled binary DAC currents. A new concept for DAC flexibility is presented. The associated architecture is based on a modular design approach that uses parallel sub-DAC units to realize flexible design, functionality and performance.

Two main concepts, self-calibration and flexibility, are demonstrated in practice using three DAC testchips in 250nm, 180nm and 40nm standard CMOS. Smart and Flexible Digital-to-Analog Converters will be useful to both advanced professionals and newcomers in the field. Advanced professionals will find new methods that are fully elaborated from analysis at conceptual level to measurement results at test-chip level. New comers in the field will find structured knowledge of fully referenced state-of-the art methods with many fully explained novelties.<

DAC linearity is analysed with respect to the accuracy of the DAC unit elements. A classification is proposed of the many different current-steering DAC correction methods. The classification reveals methods that do not yet exist in the open literature. Further, this book systematically analyses self-calibration correction methods for the various DAC mismatch errors. For instance, efficient calibration of DAC binary currents is identified as an important missing method.

This book goes on to propose a new methodology for correcting mismatch errors of both nominally identical unary as well as scaled binary DAC currents. A new concept for DAC flexibility is presented. The associated architecture is based on a modular design approach that uses parallel sub-DAC units to realize flexible design, functionality and performance.

Two main concepts, self-calibration and flexibility, are demonstrated in practice using three DAC testchips in 250nm, 180nm and 40nm standard CMOS. Smart and Flexible Digital-to-Analog Converters will be useful to both advanced professionals and newcomers in the field. Advanced professionals will find new methods that are fully elaborated from analysis at conceptual level to measurement results at test-chip level. New comers in the field will find structured knowledge of fully referenced state-of-the art methods with many fully explained novelties.

This book goes on to propose a new methodology for correcting mismatch errors of both nominally identical unary as well as scaled binary DAC currents. A new concept for DAC flexibility is presented. The associated architecture is based on a modular design approach that uses parallel sub-DAC units to realize flexible design, functionality and performance.

Two main concepts, self-calibration and flexibility, are demonstrated in practice using three DAC testchips in 250nm, 180nm and 40nm standard CMOS. Smart and Flexible Digital-to-Analog Converters will be useful to both advanced professionals and newcomers in the field. Advanced professionals will find new methods that are fully elaborated from analysis at conceptual level to measurement results at test-chip level. New comers in the field will find structured knowledge of fully referenced state-of-the art methods with many fully explained novelties.

Two main concepts, self-calibration and flexibility, are demonstrated in practice using three DAC testchips in 250nm, 180nm and 40nm standard CMOS. Smart and Flexible Digital-to-Analog Converters will be useful to both advanced professionals and newcomers in the field. Advanced professionals will find new methods that are fully elaborated from analysis at conceptual level to measurement results at test-chip level. New comers in the field will find structured knowledge of fully referenced state-of-the art methods with many fully explained novelties.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Smart and Flexible Digital-to-Analog Converters proposes new concepts and implementations for flexibility and self-correction of current-steering digital-to-analog converters (DACs) which allow the attainment of a wide range of functional and performance specifications, with a much reduced dependence on the fabrication process.

DAC linearity is analysed with respect to the accuracy of the DAC unit elements. A classification is proposed of the many different current-steering DAC correction methods. The classification reveals methods that do not yet exist in the open literature. Further, this book systematically analyses self-calibration correction methods for the various DAC mismatch errors. For instance, efficient calibration of DAC binary currents is identified as an important missing method.

This book goes on to propose a new methodology for correcting mismatch errors of both nominally identical unary as well as scaled binary DAC currents. A new concept for DAC flexibility is presented. The associated architecture is based on a modular design approach that uses parallel sub-DAC units to realize flexible design, functionality and performance.

Two main concepts, self-calibration and flexibility, are demonstrated in practice using three DAC testchips in 250nm, 180nm and 40nm standard CMOS. Smart and Flexible Digital-to-Analog Converters will be useful to both advanced professionals and newcomers in the field. Advanced professionals will find new methods that are fully elaborated from analysis at conceptual level to measurement results at test-chip level. New comers in the field will find structured knowledge of fully referenced state-of-the art methods with many fully explained novelties.<

DAC linearity is analysed with respect to the accuracy of the DAC unit elements. A classification is proposed of the many different current-steering DAC correction methods. The classification reveals methods that do not yet exist in the open literature. Further, this book systematically analyses self-calibration correction methods for the various DAC mismatch errors. For instance, efficient calibration of DAC binary currents is identified as an important missing method.

This book goes on to propose a new methodology for correcting mismatch errors of both nominally identical unary as well as scaled binary DAC currents. A new concept for DAC flexibility is presented. The associated architecture is based on a modular design approach that uses parallel sub-DAC units to realize flexible design, functionality and performance.

Two main concepts, self-calibration and flexibility, are demonstrated in practice using three DAC testchips in 250nm, 180nm and 40nm standard CMOS. Smart and Flexible Digital-to-Analog Converters will be useful to both advanced professionals and newcomers in the field. Advanced professionals will find new methods that are fully elaborated from analysis at conceptual level to measurement results at test-chip level. New comers in the field will find structured knowledge of fully referenced state-of-the art methods with many fully explained novelties.

This book goes on to propose a new methodology for correcting mismatch errors of both nominally identical unary as well as scaled binary DAC currents. A new concept for DAC flexibility is presented. The associated architecture is based on a modular design approach that uses parallel sub-DAC units to realize flexible design, functionality and performance.

Two main concepts, self-calibration and flexibility, are demonstrated in practice using three DAC testchips in 250nm, 180nm and 40nm standard CMOS. Smart and Flexible Digital-to-Analog Converters will be useful to both advanced professionals and newcomers in the field. Advanced professionals will find new methods that are fully elaborated from analysis at conceptual level to measurement results at test-chip level. New comers in the field will find structured knowledge of fully referenced state-of-the art methods with many fully explained novelties.

Two main concepts, self-calibration and flexibility, are demonstrated in practice using three DAC testchips in 250nm, 180nm and 40nm standard CMOS. Smart and Flexible Digital-to-Analog Converters will be useful to both advanced professionals and newcomers in the field. Advanced professionals will find new methods that are fully elaborated from analysis at conceptual level to measurement results at test-chip level. New comers in the field will find structured knowledge of fully referenced state-of-the art methods with many fully explained novelties.

More books from Springer Netherlands

Cover of the book Otto Hahn and the Rise of Nuclear Physics by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book Out of Time by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book Moore on Right and Wrong by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book Data Protection in a Profiled World by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book Advanced Sensors for Safety and Security by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book What was Mechanical about Mechanics by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book Can Theories be Refuted? by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book Computer Treatment of Large Air Pollution Models by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book Genital Autonomy: by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book Aging of the Organs and Systems by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book Reading Comprehension by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book Towards Sustainable Building by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book Hydrological Processes of the Danube River Basin by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book Cultivating Biodiversity to Transform Agriculture by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
Cover of the book The Therapy of Pain by Georgi Radulov, Patrick Quinn, Hans Hegt, Arthur H.M. van Roermund
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy