Regulation of Ca2+-ATPases,V-ATPases and F-ATPases

Nonfiction, Science & Nature, Science, Biological Sciences, Cytology, Biochemistry
Cover of the book Regulation of Ca2+-ATPases,V-ATPases and F-ATPases by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319247809
Publisher: Springer International Publishing Publication: December 10, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319247809
Publisher: Springer International Publishing
Publication: December 10, 2015
Imprint: Springer
Language: English

The biological membranes of cellular organization enfold an important group of membrane proteins called the ATPases, which are not only versatile in maintaining chemical gradient and electrical potential across the membrane but also bring metabolites necessary for cell metabolism and drive out toxins, waste products and solutes that otherwise can curb cell functions. ATPases are distributed virtually in all live forms starting from unicellular to multicellular and also in viruses. There are different types of ATPases, which differ in function and structure and in the type of ions they transport. The three main types of the ion pump ATPase family are: (i) P-type ATPases that transport different ions across membranes and Ca2+ATPases belongs to this catagory (ii) F-type ATPase in mitochondria, chloroplasts and bacterial plasma membranes produce ATP using the proton gradient; and (iii) V-type ATPase catalyzes ATP hydrolysis to transport solutes and maintains acidic pH in organelles like lysosomes. Genetic defects in either of the ATPases cause several diseases and a number of researches have demonstrated the involvement of the members of ATPases in the cell pathology and diseases, thereby penetrating exciting new areas of our understanding. In this book, the authors summarize recent knowledge about the molecular mechanisms associated with Ca2+-ATPase, V-ATPase

and F-ATPase in intracellular and extracellular Ca2+ transport, mitochondrial ATP synthase, vesicular H+ transport, and lysosomal pH regulation. This book thereby   bridges the gap between fundamental research and biomedical and pharmaceutical applications. The book provides an informative resource to improve ATPase research and modern therapeutic approaches toward different life threatening diseases that are associated with dysregulation of the ATPases.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The biological membranes of cellular organization enfold an important group of membrane proteins called the ATPases, which are not only versatile in maintaining chemical gradient and electrical potential across the membrane but also bring metabolites necessary for cell metabolism and drive out toxins, waste products and solutes that otherwise can curb cell functions. ATPases are distributed virtually in all live forms starting from unicellular to multicellular and also in viruses. There are different types of ATPases, which differ in function and structure and in the type of ions they transport. The three main types of the ion pump ATPase family are: (i) P-type ATPases that transport different ions across membranes and Ca2+ATPases belongs to this catagory (ii) F-type ATPase in mitochondria, chloroplasts and bacterial plasma membranes produce ATP using the proton gradient; and (iii) V-type ATPase catalyzes ATP hydrolysis to transport solutes and maintains acidic pH in organelles like lysosomes. Genetic defects in either of the ATPases cause several diseases and a number of researches have demonstrated the involvement of the members of ATPases in the cell pathology and diseases, thereby penetrating exciting new areas of our understanding. In this book, the authors summarize recent knowledge about the molecular mechanisms associated with Ca2+-ATPase, V-ATPase

and F-ATPase in intracellular and extracellular Ca2+ transport, mitochondrial ATP synthase, vesicular H+ transport, and lysosomal pH regulation. This book thereby   bridges the gap between fundamental research and biomedical and pharmaceutical applications. The book provides an informative resource to improve ATPase research and modern therapeutic approaches toward different life threatening diseases that are associated with dysregulation of the ATPases.

More books from Springer International Publishing

Cover of the book Information and Communication Technologies in Education, Research, and Industrial Applications by
Cover of the book Thermal Analysis of Power Electronic Devices Used in Renewable Energy Systems by
Cover of the book Design of Polymeric Platforms for Selective Biorecognition by
Cover of the book Lean Education: An Overview of Current Issues by
Cover of the book Integer Programming and Combinatorial Optimization by
Cover of the book The Development of Criminal and Antisocial Behavior by
Cover of the book Cardiovascular Diseases and Depression by
Cover of the book Coding for MIMO-OFDM in Future Wireless Systems by
Cover of the book Agricultural Biomass Based Potential Materials by
Cover of the book Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials by
Cover of the book Handbook of Cerebrovascular Disease and Neurointerventional Technique by
Cover of the book Comparative Literature and the Historical Imaginary by
Cover of the book Adenocarcinoma of the Esophagogastric Junction by
Cover of the book International Practice Theory by
Cover of the book Reconciling Islam, Christianity and Judaism by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy