Radionuclide Contamination and Remediation Through Plants

Nonfiction, Science & Nature, Science, Biological Sciences, Biochemistry, Technology, Environmental
Cover of the book Radionuclide Contamination and Remediation Through Plants by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319076652
Publisher: Springer International Publishing Publication: July 14, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783319076652
Publisher: Springer International Publishing
Publication: July 14, 2014
Imprint: Springer
Language: English

This book focuses on the mechanistic (microscopic) understanding of radionuclide uptake by plants in contaminated soils and potential use of phytoremediation. The key features concern radionuclide toxicity in plants, how the radioactive materials are absorbed by plants, and how the plants cope with the toxic responses. The respective chapters examine soil classification, natural plant selection, speciation of actinides, kinetic modeling, and case studies on cesium uptake after radiation accidents.

Radionuclide contaminants pose serious problems for biological systems, due to their chemical toxicity and radiological effects. The processes by which radionuclides can be incorporated into vegetation can either originate from activity interception by external plant surfaces (either directly from the atmosphere or from resuspended material), or through uptake of radionuclides via the root system. Subsequent transfer of toxic elements to the human food chain is a concrete danger. Therefore, the molecular mechanisms and genetic basis of transport into and within plants needs to be understood for two reasons: The effectiveness of radionuclide uptake into crop plants – so-called transfer coefficient – is a prerequisite for the calculation of dose due to the food path. On the other hand, efficient radionuclide transfer into plants can be made use of for decontamination of land – so-called phytoremediation, the direct use of living, green plants for in situ removal of pollutants from the environment or to reduce their concentrations to harmless levels.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book focuses on the mechanistic (microscopic) understanding of radionuclide uptake by plants in contaminated soils and potential use of phytoremediation. The key features concern radionuclide toxicity in plants, how the radioactive materials are absorbed by plants, and how the plants cope with the toxic responses. The respective chapters examine soil classification, natural plant selection, speciation of actinides, kinetic modeling, and case studies on cesium uptake after radiation accidents.

Radionuclide contaminants pose serious problems for biological systems, due to their chemical toxicity and radiological effects. The processes by which radionuclides can be incorporated into vegetation can either originate from activity interception by external plant surfaces (either directly from the atmosphere or from resuspended material), or through uptake of radionuclides via the root system. Subsequent transfer of toxic elements to the human food chain is a concrete danger. Therefore, the molecular mechanisms and genetic basis of transport into and within plants needs to be understood for two reasons: The effectiveness of radionuclide uptake into crop plants – so-called transfer coefficient – is a prerequisite for the calculation of dose due to the food path. On the other hand, efficient radionuclide transfer into plants can be made use of for decontamination of land – so-called phytoremediation, the direct use of living, green plants for in situ removal of pollutants from the environment or to reduce their concentrations to harmless levels.

More books from Springer International Publishing

Cover of the book Classical Mechanics and Electromagnetism in Accelerator Physics by
Cover of the book The Wild Oryza Genomes by
Cover of the book Migration, Risk Management and Climate Change: Evidence and Policy Responses by
Cover of the book Understanding Food Insecurity by
Cover of the book Machine Learning and Knowledge Discovery in Databases by
Cover of the book Delivering Aid Without Government by
Cover of the book Small Doses of the Future by
Cover of the book Optimization of Structures and Components by
Cover of the book Forensic Memory by
Cover of the book Professional Error Competence of Preservice Teachers by
Cover of the book Paradox Lost by
Cover of the book Atlas of Imaging in Infertility by
Cover of the book Data Management and Analytics for Medicine and Healthcare by
Cover of the book Handbook of Practical Fine Needle Aspiration and Small Tissue Biopsies by
Cover of the book Climate Change Impacts and Adaptation in Water Resources and Water Use Sectors by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy