Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease

Nonfiction, Health & Well Being, Medical, Reference, Research
Cover of the book Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789048129768
Publisher: Springer Netherlands Publication: November 10, 2009
Imprint: Springer Language: English
Author:
ISBN: 9789048129768
Publisher: Springer Netherlands
Publication: November 10, 2009
Imprint: Springer
Language: English

Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease provides the most current review of the literature relating to the role and influence of heat shock (stress) proteins on the establishment, progression and resolution of infectious disease. Written by leaders in the field of heat shock proteins (HSP) and their biological and immunological properties, the contributors provide a fascinating insight into the complex relationship between, and the involvement of prokaryotic and eukaryotic HSP in disease states. It has been known for some considerable time that heat shock proteins from prokaryotic organisms are immunodominant molecules that are intimately involved in the induction of potential protective inflammatory responses, and this aspect of HSP biology is updated herein. In addition to regulating heat shock protein gene expression, the transcription factor HSF1 also appears to play an important role in regulating immune responses to infection. Heat shock proteins are now known to influence infectious disease processes in a number of diverse ways: they are involved in the propagation of prions, the replication and morphogenesis of viruses, and the resistance of parasites to chemotherapy. These proteins also appear to be important mediators of bacteria-host interactions and inflammation, the latter via interactions with cell surface molecules and structures such as Toll-like receptors and lipid rafts. Heat shock proteins can be expressed on the surface of infected cells, and this is likely to provide a target for the innate immune response. Elevated levels of circulating HSP are present in infectious diseases and these proteins might therefore regulate inflammatory responses to pathogenic challenge on a systemic basis. Heat shock proteins are also implicated in the impact of genital tract infections on the reproductive outcome, as well as in the local and systemic consequences of periodontal disease. Fever-range temperatures can induce the expression of heat shock proteins, and the final chapter in the book examines the influence of fever-range hyperthermia on a variety of cells and the organization of plasma membranes. This book is an essential read for graduates and postgraduates in Biology, pro- and eukaryotic Biochemistry, Immunology, Microbiology, Inflammatory and Infectious Disease, and Pathology.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Prokaryotic and Eukaryotic Heat Shock Proteins in Infectious Disease provides the most current review of the literature relating to the role and influence of heat shock (stress) proteins on the establishment, progression and resolution of infectious disease. Written by leaders in the field of heat shock proteins (HSP) and their biological and immunological properties, the contributors provide a fascinating insight into the complex relationship between, and the involvement of prokaryotic and eukaryotic HSP in disease states. It has been known for some considerable time that heat shock proteins from prokaryotic organisms are immunodominant molecules that are intimately involved in the induction of potential protective inflammatory responses, and this aspect of HSP biology is updated herein. In addition to regulating heat shock protein gene expression, the transcription factor HSF1 also appears to play an important role in regulating immune responses to infection. Heat shock proteins are now known to influence infectious disease processes in a number of diverse ways: they are involved in the propagation of prions, the replication and morphogenesis of viruses, and the resistance of parasites to chemotherapy. These proteins also appear to be important mediators of bacteria-host interactions and inflammation, the latter via interactions with cell surface molecules and structures such as Toll-like receptors and lipid rafts. Heat shock proteins can be expressed on the surface of infected cells, and this is likely to provide a target for the innate immune response. Elevated levels of circulating HSP are present in infectious diseases and these proteins might therefore regulate inflammatory responses to pathogenic challenge on a systemic basis. Heat shock proteins are also implicated in the impact of genital tract infections on the reproductive outcome, as well as in the local and systemic consequences of periodontal disease. Fever-range temperatures can induce the expression of heat shock proteins, and the final chapter in the book examines the influence of fever-range hyperthermia on a variety of cells and the organization of plasma membranes. This book is an essential read for graduates and postgraduates in Biology, pro- and eukaryotic Biochemistry, Immunology, Microbiology, Inflammatory and Infectious Disease, and Pathology.

More books from Springer Netherlands

Cover of the book Religion and Human Autonomy by
Cover of the book Aspects of Face Processing by
Cover of the book Proof Theory by
Cover of the book Art, Education, and the Democratic Commitment by
Cover of the book Resilience and Risk by
Cover of the book Modern Physics and its Philosophy by
Cover of the book Rethinking the BSE Crisis by
Cover of the book Regional Assessment of Climate Change in the Mediterranean by
Cover of the book Environmental Sociology by
Cover of the book Restoration of Degraded Rivers: Challenges, Issues and Experiences by
Cover of the book Promoting Self-Change from Problem Substance Use by
Cover of the book Microsystems Dynamics by
Cover of the book Climate-Ocean Interaction by
Cover of the book CMOS Circuits for Piezoelectric Energy Harvesters by
Cover of the book Natural Kinds, Laws of Nature and Scientific Methodology by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy