Pro Machine Learning Algorithms

A Hands-On Approach to Implementing Algorithms in Python and R

Nonfiction, Computers, Advanced Computing, Artificial Intelligence, Programming, Programming Languages, General Computing
Cover of the book Pro Machine Learning Algorithms by V Kishore Ayyadevara, Apress
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: V Kishore Ayyadevara ISBN: 9781484235645
Publisher: Apress Publication: June 30, 2018
Imprint: Apress Language: English
Author: V Kishore Ayyadevara
ISBN: 9781484235645
Publisher: Apress
Publication: June 30, 2018
Imprint: Apress
Language: English

Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R.

You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers.

You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. 

What You Will Learn

  • Get an in-depth understanding of all the major machine learning and deep learning algorithms 

  • Fully appreciate the pitfalls to avoid while building models

  • Implement machine learning algorithms in the cloud 

  • Follow a hands-on approach through case studies for each algorithm

  • Gain the tricks of ensemble learning to build more accurate models

  • Discover the basics of programming in R/Python and the Keras framework for deep learning

Who This Book Is For

Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Bridge the gap between a high-level understanding of how an algorithm works and knowing the nuts and bolts to tune your models better. This book will give you the confidence and skills when developing all the major machine learning models. In Pro Machine Learning Algorithms, you will first develop the algorithm in Excel so that you get a practical understanding of all the levers that can be tuned in a model, before implementing the models in Python/R.

You will cover all the major algorithms: supervised and unsupervised learning, which include linear/logistic regression; k-means clustering; PCA; recommender system; decision tree; random forest; GBM; and neural networks. You will also be exposed to the latest in deep learning through CNNs, RNNs, and word2vec for text mining. You will be learning not only the algorithms, but also the concepts of feature engineering to maximize the performance of a model. You will see the theory along with case studies, such as sentiment classification, fraud detection, recommender systems, and image recognition, so that you get the best of both theory and practice for the vast majority of the machine learning algorithms used in industry. Along with learning the algorithms, you will also be exposed to running machine-learning models on all the major cloud service providers.

You are expected to have minimal knowledge of statistics/software programming and by the end of this book you should be able to work on a machine learning project with confidence. 

What You Will Learn

Who This Book Is For

Business analysts/ IT professionals who want to transition into data science roles. Data scientists who want to solidify their knowledge in machine learning.

More books from Apress

Cover of the book Pro SharePoint 2013 Business Intelligence Solutions by V Kishore Ayyadevara
Cover of the book Pro Python Best Practices by V Kishore Ayyadevara
Cover of the book Pro JPA 2 by V Kishore Ayyadevara
Cover of the book ES6 for Humans by V Kishore Ayyadevara
Cover of the book Cross Over to HTML5 Game Development by V Kishore Ayyadevara
Cover of the book iPhone and iPad Apps for Absolute Beginners by V Kishore Ayyadevara
Cover of the book PySpark SQL Recipes by V Kishore Ayyadevara
Cover of the book How to Speak Tech by V Kishore Ayyadevara
Cover of the book BizTalk 2013 EDI for Supply Chain Management by V Kishore Ayyadevara
Cover of the book Angular 5 Projects by V Kishore Ayyadevara
Cover of the book Coding the Arduino by V Kishore Ayyadevara
Cover of the book From Techie to Boss by V Kishore Ayyadevara
Cover of the book Advanced R Statistical Programming and Data Models by V Kishore Ayyadevara
Cover of the book Practical Azure Application Development by V Kishore Ayyadevara
Cover of the book The Tech Professional's Guide to Communicating in a Global Workplace by V Kishore Ayyadevara
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy