Principles of Noology

Toward a Theory and Science of Intelligence

Nonfiction, Health & Well Being, Medical, Specialties, Internal Medicine, Neuroscience, Computers, Advanced Computing, Artificial Intelligence, Science & Nature, Science
Cover of the book Principles of Noology by Seng-Beng Ho, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Seng-Beng Ho ISBN: 9783319321134
Publisher: Springer International Publishing Publication: June 29, 2016
Imprint: Springer Language: English
Author: Seng-Beng Ho
ISBN: 9783319321134
Publisher: Springer International Publishing
Publication: June 29, 2016
Imprint: Springer
Language: English

The idea of this bookis toestablish a new scientific discipline, “noology,” under which a set of fundamental principles are proposed for the characterization of both naturally occurring and artificial intelligent systems.

The methodology adopted in Principles of Noology for the characterization of intelligent systems, or “noological systems,” is a computational one, much like that of AI. Many AI devices such as predicate logic representations, search mechanisms, heuristics, and computational learning mechanisms are employed but they are recast in a totally new framework for the characterization of noological systems. The computational approach in this book provides a quantitative and high resolution understanding of noological processes, and at the same time the principles and methodologies formulated are directly implementable in AI systems.

In contrast to traditional AI that ignores motivational and affective processes, under the paradigm of noology, motivational and affective processes are central to the functioning of noological systems and their roles in noological processes are elucidated in detailed computational terms. In addition, a number of novel representational and learning mechanisms are proposed, and ample examples and computer simulations are provided to show their applications. These include rapid effective causal learning (a novel learning mechanism that allows an AI/noological system to learn causality with a small number of training instances), learning of scripts that enables knowledge chunking and rapid problem solving, and learning of heuristics that further accelerates problem solving. Semantic grounding allows an AI/noological system to “truly understand” the meaning of the knowledge it encodes. This issue is extensively explored.

This is a highly informative book providing novel and deep insights into intelligent systems which is particularly relevant to both researchers and students of AI and the cognitive sciences.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The idea of this bookis toestablish a new scientific discipline, “noology,” under which a set of fundamental principles are proposed for the characterization of both naturally occurring and artificial intelligent systems.

The methodology adopted in Principles of Noology for the characterization of intelligent systems, or “noological systems,” is a computational one, much like that of AI. Many AI devices such as predicate logic representations, search mechanisms, heuristics, and computational learning mechanisms are employed but they are recast in a totally new framework for the characterization of noological systems. The computational approach in this book provides a quantitative and high resolution understanding of noological processes, and at the same time the principles and methodologies formulated are directly implementable in AI systems.

In contrast to traditional AI that ignores motivational and affective processes, under the paradigm of noology, motivational and affective processes are central to the functioning of noological systems and their roles in noological processes are elucidated in detailed computational terms. In addition, a number of novel representational and learning mechanisms are proposed, and ample examples and computer simulations are provided to show their applications. These include rapid effective causal learning (a novel learning mechanism that allows an AI/noological system to learn causality with a small number of training instances), learning of scripts that enables knowledge chunking and rapid problem solving, and learning of heuristics that further accelerates problem solving. Semantic grounding allows an AI/noological system to “truly understand” the meaning of the knowledge it encodes. This issue is extensively explored.

This is a highly informative book providing novel and deep insights into intelligent systems which is particularly relevant to both researchers and students of AI and the cognitive sciences.

More books from Springer International Publishing

Cover of the book Exercises in Analysis by Seng-Beng Ho
Cover of the book Computational Science and Its Applications - ICCSA 2016 by Seng-Beng Ho
Cover of the book HCI International 2016 – Posters' Extended Abstracts by Seng-Beng Ho
Cover of the book Disaster Vulnerability, Hazards and Resilience by Seng-Beng Ho
Cover of the book Integrative Medicine for Breast Cancer by Seng-Beng Ho
Cover of the book Quodons in Mica by Seng-Beng Ho
Cover of the book Augmented Marked Graphs by Seng-Beng Ho
Cover of the book Strategies for Resisting Sexism in the Academy by Seng-Beng Ho
Cover of the book Non-minimal Higgs Inflation and Frame Dependence in Cosmology by Seng-Beng Ho
Cover of the book Tunneling Field Effect Transistor Technology by Seng-Beng Ho
Cover of the book Systematic Approaches to Argument by Analogy by Seng-Beng Ho
Cover of the book Terahertz Planar Antennas for Next Generation Communication by Seng-Beng Ho
Cover of the book Annual Update in Intensive Care and Emergency Medicine 2016 by Seng-Beng Ho
Cover of the book Computers and Games by Seng-Beng Ho
Cover of the book Genetic Technology and Food Safety by Seng-Beng Ho
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy