Practical Machine Learning: Innovations in Recommendation

Nonfiction, Computers, Networking & Communications, ISDN, Electronic Data Interchange
Cover of the book Practical Machine Learning: Innovations in Recommendation by Ted Dunning, Ellen Friedman, O'Reilly Media
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Ted Dunning, Ellen Friedman ISBN: 9781491915714
Publisher: O'Reilly Media Publication: August 18, 2014
Imprint: O'Reilly Media Language: English
Author: Ted Dunning, Ellen Friedman
ISBN: 9781491915714
Publisher: O'Reilly Media
Publication: August 18, 2014
Imprint: O'Reilly Media
Language: English

Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settings—and demonstrates how even a small-scale development team can design an effective large-scale recommendation system.

Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. You’ll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time.

  • Understand the tradeoffs between simple and complex recommenders
  • Collect user data that tracks user actions—rather than their ratings
  • Predict what a user wants based on behavior by others, using Mahoutfor co-occurrence analysis
  • Use search technology to offer recommendations in real time, complete with item metadata
  • Watch the recommender in action with a music service example
  • Improve your recommender with dithering, multimodal recommendation, and other techniques
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Building a simple but powerful recommendation system is much easier than you think. Approachable for all levels of expertise, this report explains innovations that make machine learning practical for business production settings—and demonstrates how even a small-scale development team can design an effective large-scale recommendation system.

Apache Mahout committers Ted Dunning and Ellen Friedman walk you through a design that relies on careful simplification. You’ll learn how to collect the right data, analyze it with an algorithm from the Mahout library, and then easily deploy the recommender using search technology, such as Apache Solr or Elasticsearch. Powerful and effective, this efficient combination does learning offline and delivers rapid response recommendations in real time.

More books from O'Reilly Media

Cover of the book Access 2007 for Starters: The Missing Manual by Ted Dunning, Ellen Friedman
Cover of the book Designing Mobile Payment Experiences by Ted Dunning, Ellen Friedman
Cover of the book The Architecture of Privacy by Ted Dunning, Ellen Friedman
Cover of the book Internet Core Protocols: The Definitive Guide by Ted Dunning, Ellen Friedman
Cover of the book QuickBooks 2010: The Missing Manual by Ted Dunning, Ellen Friedman
Cover of the book Securing Ajax Applications by Ted Dunning, Ellen Friedman
Cover of the book Getting Started with Google Wave by Ted Dunning, Ellen Friedman
Cover of the book Learning JavaScript Design Patterns by Ted Dunning, Ellen Friedman
Cover of the book Web Performance Daybook Volume 2 by Ted Dunning, Ellen Friedman
Cover of the book BioCoder #8 by Ted Dunning, Ellen Friedman
Cover of the book Designing Embedded Hardware by Ted Dunning, Ellen Friedman
Cover of the book 21st Century C by Ted Dunning, Ellen Friedman
Cover of the book Hacking and Securing iOS Applications by Ted Dunning, Ellen Friedman
Cover of the book REALBasic: TDG by Ted Dunning, Ellen Friedman
Cover of the book Knoppix Hacks by Ted Dunning, Ellen Friedman
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy