Practical Low Power Digital VLSI Design

Nonfiction, Science & Nature, Technology, Electronics, Circuits, Electricity
Cover of the book Practical Low Power Digital VLSI Design by Gary K. Yeap, Springer US
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Gary K. Yeap ISBN: 9781461560654
Publisher: Springer US Publication: December 6, 2012
Imprint: Springer Language: English
Author: Gary K. Yeap
ISBN: 9781461560654
Publisher: Springer US
Publication: December 6, 2012
Imprint: Springer
Language: English

Practical Low Power Digital VLSI Design emphasizes the optimization and trade-off techniques that involve power dissipation, in the hope that the readers are better prepared the next time they are presented with a low power design problem. The book highlights the basic principles, methodologies and techniques that are common to most CMOS digital designs. The advantages and disadvantages of a particular low power technique are discussed. Besides the classical area-performance trade-off, the impact to design cycle time, complexity, risk, testability and reusability are discussed. The wide impacts to all aspects of design are what make low power problems challenging and interesting. Heavy emphasis is given to top-down structured design style, with occasional coverage in the semicustom design methodology. The examples and design techniques cited have been known to be applied to production scale designs or laboratory settings. The goal of Practical Low Power Digital VLSI Design is to permit the readers to practice the low power techniques using current generation design style and process technology.
Practical Low Power Digital VLSI Design considers a wide range of design abstraction levels spanning circuit, logic, architecture and system. Substantial basic knowledge is provided for qualitative and quantitative analysis at the different design abstraction levels. Low power techniques are presented at the circuit, logic, architecture and system levels. Special techniques that are specific to some key areas of digital chip design are discussed as well as some of the low power techniques that are just appearing on the horizon.
Practical Low Power Digital VLSI Design will be of benefit to VLSI design engineers and students who have a fundamental knowledge of CMOS digital design.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Practical Low Power Digital VLSI Design emphasizes the optimization and trade-off techniques that involve power dissipation, in the hope that the readers are better prepared the next time they are presented with a low power design problem. The book highlights the basic principles, methodologies and techniques that are common to most CMOS digital designs. The advantages and disadvantages of a particular low power technique are discussed. Besides the classical area-performance trade-off, the impact to design cycle time, complexity, risk, testability and reusability are discussed. The wide impacts to all aspects of design are what make low power problems challenging and interesting. Heavy emphasis is given to top-down structured design style, with occasional coverage in the semicustom design methodology. The examples and design techniques cited have been known to be applied to production scale designs or laboratory settings. The goal of Practical Low Power Digital VLSI Design is to permit the readers to practice the low power techniques using current generation design style and process technology.
Practical Low Power Digital VLSI Design considers a wide range of design abstraction levels spanning circuit, logic, architecture and system. Substantial basic knowledge is provided for qualitative and quantitative analysis at the different design abstraction levels. Low power techniques are presented at the circuit, logic, architecture and system levels. Special techniques that are specific to some key areas of digital chip design are discussed as well as some of the low power techniques that are just appearing on the horizon.
Practical Low Power Digital VLSI Design will be of benefit to VLSI design engineers and students who have a fundamental knowledge of CMOS digital design.

More books from Springer US

Cover of the book Health Research in Practice by Gary K. Yeap
Cover of the book Dictionary of Food Ingredients by Gary K. Yeap
Cover of the book TiO2 Nanotube Arrays by Gary K. Yeap
Cover of the book The Reconstruction of Natural Zeolites by Gary K. Yeap
Cover of the book Genetic and Environmental Factors in Human Ability by Gary K. Yeap
Cover of the book Diagnosis and Treatment of Autism by Gary K. Yeap
Cover of the book Understanding Sleep and Dreaming by Gary K. Yeap
Cover of the book After the Crime by Gary K. Yeap
Cover of the book The Use of Human Cells for the Evaluation of Risk from Physical and Chemical Agents by Gary K. Yeap
Cover of the book Strategic Human Resource Planning Applications by Gary K. Yeap
Cover of the book Applied Mathematical Modelling of Engineering Problems by Gary K. Yeap
Cover of the book Hormone Signaling by Gary K. Yeap
Cover of the book Guide to Psychological Assessment with Hispanics by Gary K. Yeap
Cover of the book The Effects of Parental Dysfunction on Children by Gary K. Yeap
Cover of the book Metabolic Effects of Gonadal Hormones and Contraceptive Steroids by Gary K. Yeap
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy