Plasma Etching Processes for CMOS Devices Realization

Nonfiction, Science & Nature, Technology, Material Science, Electronics
Cover of the book Plasma Etching Processes for CMOS Devices Realization by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780081011966
Publisher: Elsevier Science Publication: January 25, 2017
Imprint: ISTE Press - Elsevier Language: English
Author:
ISBN: 9780081011966
Publisher: Elsevier Science
Publication: January 25, 2017
Imprint: ISTE Press - Elsevier
Language: English

Plasma etching has long enabled the perpetuation of Moore's Law. Today, etch compensation helps to create devices that are smaller than 20 nm. But, with the constant downscaling in device dimensions and the emergence of complex 3D structures (like FinFet, Nanowire and stacked nanowire at longer term) and sub 20 nm devices, plasma etching requirements have become more and more stringent. Now more than ever, plasma etch technology is used to push the limits of semiconductor device fabrication into the nanoelectronics age. This will require improvement in plasma technology (plasma sources, chamber design, etc.), new chemistries (etch gases, flows, interactions with substrates, etc.) as well as a compatibility with new patterning techniques such as multiple patterning, EUV lithography, Direct Self Assembly, ebeam lithography or nanoimprint lithography. This book presents these etch challenges and associated solutions encountered throughout the years for transistor realization.

  • Helps readers discover the master technology used to pattern complex structures involving various materials
  • Explores the capabilities of cold plasmas to generate well controlled etched profiles and high etch selectivities between materials
  • Teaches users how etch compensation helps to create devices that are smaller than 20 nm
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Plasma etching has long enabled the perpetuation of Moore's Law. Today, etch compensation helps to create devices that are smaller than 20 nm. But, with the constant downscaling in device dimensions and the emergence of complex 3D structures (like FinFet, Nanowire and stacked nanowire at longer term) and sub 20 nm devices, plasma etching requirements have become more and more stringent. Now more than ever, plasma etch technology is used to push the limits of semiconductor device fabrication into the nanoelectronics age. This will require improvement in plasma technology (plasma sources, chamber design, etc.), new chemistries (etch gases, flows, interactions with substrates, etc.) as well as a compatibility with new patterning techniques such as multiple patterning, EUV lithography, Direct Self Assembly, ebeam lithography or nanoimprint lithography. This book presents these etch challenges and associated solutions encountered throughout the years for transistor realization.

More books from Elsevier Science

Cover of the book Small RNAs: Their Diversity, Roles and Practical Uses by
Cover of the book Applied Neurophysiology by
Cover of the book Safety and Security Review for the Process Industries by
Cover of the book Protein Engineering for Therapeutics, Part B by
Cover of the book Introduction to Biological and Small Molecule Drug Research and Development by
Cover of the book Hormones and Reproduction of Vertebrates, Volume 4 by
Cover of the book El Nino, La Nina, and the Southern Oscillation by
Cover of the book Numerical Time-Dependent Partial Differential Equations for Scientists and Engineers by
Cover of the book International Review of Research in Mental Retardation by
Cover of the book Encyclopedia of Violence, Peace, and Conflict by
Cover of the book Computational Methods for Process Simulation by
Cover of the book Table of Integrals, Series, and Products by
Cover of the book Statistical Postprocessing of Ensemble Forecasts by
Cover of the book Paleoseismology by
Cover of the book Colour Additives for Foods and Beverages by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy