Physical Models of Cell Motility

Nonfiction, Science & Nature, Science, Biological Sciences, Biophysics, Technology, Engineering
Cover of the book Physical Models of Cell Motility by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319244488
Publisher: Springer International Publishing Publication: December 16, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319244488
Publisher: Springer International Publishing
Publication: December 16, 2015
Imprint: Springer
Language: English

This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force generation and motility, an abundance of computational models have been proposed in recent years, from finite element to immerse interface methods and phase field approaches.This book is primarily written for physicists, mathematical biologists and biomedical engineers working in this rapidly expanding field, and ca

n serve as supplementary reading for advanced graduate courses in biophysics and mathematical biology. The e-book incorporates experimental and computer animations illustrating various aspects of cell movement.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book surveys the most recent advances in physics-inspired cell movement models. This synergetic, cross-disciplinary effort to increase the fidelity of computational algorithms will lead to a better understanding of the complex biomechanics of cell movement, and stimulate progress in research on related active matter systems, from suspensions of bacteria and synthetic swimmers to cell tissues and cytoskeleton.Cell motility and collective motion are among the most important themes in biology and statistical physics of out-of-equilibrium systems, and crucial for morphogenesis, wound healing, and immune response in eukaryotic organisms. It is also relevant for the development of effective treatment strategies for diseases such as cancer, and for the design of bioactive surfaces for cell sorting and manipulation. Substrate-based cell motility is, however, a very complex process as regulatory pathways and physical force generation mechanisms are intertwined. To understand the interplay between adhesion, force generation and motility, an abundance of computational models have been proposed in recent years, from finite element to immerse interface methods and phase field approaches.This book is primarily written for physicists, mathematical biologists and biomedical engineers working in this rapidly expanding field, and ca

n serve as supplementary reading for advanced graduate courses in biophysics and mathematical biology. The e-book incorporates experimental and computer animations illustrating various aspects of cell movement.

More books from Springer International Publishing

Cover of the book Paradoxes in Aerohydrodynamics by
Cover of the book Filaments in Bioprocesses by
Cover of the book Development of a Cyber Physical System for Fire Safety by
Cover of the book Charge Multiplicity Asymmetry Correlation Study Searching for Local Parity Violation at RHIC for STAR Collaboration by
Cover of the book Biophysical Effects of Cold Atmospheric Plasma on Glial Tumor Cells by
Cover of the book Ramsey Theory for Discrete Structures by
Cover of the book Nutrition and the Welfare of Farm Animals by
Cover of the book Transnational Contexts of Culture, Gender, Class, and Colonialism in Play by
Cover of the book The Alnö Carbonatite Complex, Central Sweden by
Cover of the book Advanced Quantum Mechanics by
Cover of the book Intelligent Computer Mathematics by
Cover of the book Probabilistic Models of Population Evolution by
Cover of the book Pathology of Testicular and Penile Neoplasms by
Cover of the book Boko Haram’s Terrorism and the Nigerian State by
Cover of the book Intelligent Building Control Systems by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy