Personalized Predictive Modeling in Type 1 Diabetes

Nonfiction, Health & Well Being, Medical, Specialties, Internal Medicine, Endocrinology & Metabolism, Computers
Cover of the book Personalized Predictive Modeling in Type 1 Diabetes by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas, Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas ISBN: 9780128051467
Publisher: Elsevier Science Publication: December 11, 2017
Imprint: Academic Press Language: English
Author: Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
ISBN: 9780128051467
Publisher: Elsevier Science
Publication: December 11, 2017
Imprint: Academic Press
Language: English

Personalized Predictive Modeling in Diabetes features state-of-the-art methodologies and algorithmic approaches which have been applied to predictive modeling of glucose concentration, ranging from simple autoregressive models of the CGM time series to multivariate nonlinear regression techniques of machine learning. Developments in the field have been analyzed with respect to: (i) feature set (univariate or multivariate), (ii) regression technique (linear or non-linear), (iii) learning mechanism (batch or sequential), (iv) development and testing procedure and (v) scaling properties. In addition, simulation models of meal-derived glucose absorption and insulin dynamics and kinetics are covered, as an integral part of glucose predictive models.

This book will help engineers and clinicians to: select a regression technique which can capture both linear and non-linear dynamics in glucose metabolism in diabetes, and which exhibits good generalization performance under stationary and non-stationary conditions; ensure the scalability of the optimization algorithm (learning mechanism) with respect to the size of the dataset, provided that multiple days of patient monitoring are needed to obtain a reliable predictive model; select a features set which efficiently represents both spatial and temporal dependencies between the input variables and the glucose concentration; select simulation models of subcutaneous insulin absorption and meal absorption; identify an appropriate validation procedure, and identify realistic performance measures.

  • Describes fundamentals of modeling techniques as applied to glucose control
  • Covers model selection process and model validation
  • Offers computer code on a companion website to show implementation of models and algorithms
  • Features the latest developments in the field of diabetes predictive modeling
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Personalized Predictive Modeling in Diabetes features state-of-the-art methodologies and algorithmic approaches which have been applied to predictive modeling of glucose concentration, ranging from simple autoregressive models of the CGM time series to multivariate nonlinear regression techniques of machine learning. Developments in the field have been analyzed with respect to: (i) feature set (univariate or multivariate), (ii) regression technique (linear or non-linear), (iii) learning mechanism (batch or sequential), (iv) development and testing procedure and (v) scaling properties. In addition, simulation models of meal-derived glucose absorption and insulin dynamics and kinetics are covered, as an integral part of glucose predictive models.

This book will help engineers and clinicians to: select a regression technique which can capture both linear and non-linear dynamics in glucose metabolism in diabetes, and which exhibits good generalization performance under stationary and non-stationary conditions; ensure the scalability of the optimization algorithm (learning mechanism) with respect to the size of the dataset, provided that multiple days of patient monitoring are needed to obtain a reliable predictive model; select a features set which efficiently represents both spatial and temporal dependencies between the input variables and the glucose concentration; select simulation models of subcutaneous insulin absorption and meal absorption; identify an appropriate validation procedure, and identify realistic performance measures.

More books from Elsevier Science

Cover of the book Haemonchus Contortus and Haemonchosis – Past, Present and Future Trends by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book Teaching to Individual Differences in Science and Engineering Librarianship by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book Perovskite Photovoltaics by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book Risk Management for Food Allergy by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book Nanobiosensors by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book Principles of Engineering Manufacture by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book Advances in Parasitology by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book Lanthanides Series Determination by Various Analytical Methods by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book Fish Physiology: Hypoxia by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book Molecular Targets in Protein Misfolding and Neurodegenerative Disease by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book Polymer Characterization by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book Composite Magnetoelectrics by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book The Impact and Prospects of Green Chemistry for Textile Technology by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book Proceedings of the 11th International Conference on Vacuum Ultraviolet Radiation Physics by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
Cover of the book Molecular Basis of Memory by Eleni I. Georga, Dimitrios I Fotiadis, Stelios K. Tigas
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy