Partial Differential Equations of Mathematical Physics and Integral Equations

Nonfiction, Science & Nature, Mathematics, Differential Equations, Science, Physics, Mathematical Physics
Cover of the book Partial Differential Equations of Mathematical Physics and Integral Equations by John W. Lee, Ronald B. Guenther, Dover Publications
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: John W. Lee, Ronald B. Guenther ISBN: 9780486137629
Publisher: Dover Publications Publication: September 19, 2012
Imprint: Dover Publications Language: English
Author: John W. Lee, Ronald B. Guenther
ISBN: 9780486137629
Publisher: Dover Publications
Publication: September 19, 2012
Imprint: Dover Publications
Language: English

This book was written to help mathematics students and those in the physical sciences learn modern mathematical techniques for setting up and analyzing problems. The mathematics used is rigorous, but not overwhelming, while the authors carefully model physical situations, emphasizing feedback among a beginning model, physical experiments, mathematical predictions, and the subsequent refinement and reevaluation of the physical model itself.
Chapter 1 begins with a discussion of various physical problems and equations that play a central role in applications. The following chapters take up the theory of partial differential equations, including detailed discussions of uniqueness, existence, and continuous dependence questions, as well as techniques for constructing conclusions. Specifically, Chapters 2 through 6 deal with problems in one spatial dimension. Chapter 7 is a detailed introduction to the theory of integral equations; then Chapters 8 through 12 treat problems in more spatial variables. Each chapter begins with a discussion of problems that can be treated by elementary means, such as separation of variables or integral transforms, and which lead to explicit, analytical representations of solutions.

The minimal mathematical prerequisites for a good grasp of the material in this book are a course in advanced calculus, or an advanced course in science or engineering, and a basic exposure to matrix methods. Students of mathematics, physics, engineering, and other disciplines will find here an excellent guide to mathematical problem-solving techniques with a broad range of applications. For this edition the authors have provided a new section of Solutions and Hints to selected Problems. Suggestions for further reading complete the text.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book was written to help mathematics students and those in the physical sciences learn modern mathematical techniques for setting up and analyzing problems. The mathematics used is rigorous, but not overwhelming, while the authors carefully model physical situations, emphasizing feedback among a beginning model, physical experiments, mathematical predictions, and the subsequent refinement and reevaluation of the physical model itself.
Chapter 1 begins with a discussion of various physical problems and equations that play a central role in applications. The following chapters take up the theory of partial differential equations, including detailed discussions of uniqueness, existence, and continuous dependence questions, as well as techniques for constructing conclusions. Specifically, Chapters 2 through 6 deal with problems in one spatial dimension. Chapter 7 is a detailed introduction to the theory of integral equations; then Chapters 8 through 12 treat problems in more spatial variables. Each chapter begins with a discussion of problems that can be treated by elementary means, such as separation of variables or integral transforms, and which lead to explicit, analytical representations of solutions.

The minimal mathematical prerequisites for a good grasp of the material in this book are a course in advanced calculus, or an advanced course in science or engineering, and a basic exposure to matrix methods. Students of mathematics, physics, engineering, and other disciplines will find here an excellent guide to mathematical problem-solving techniques with a broad range of applications. For this edition the authors have provided a new section of Solutions and Hints to selected Problems. Suggestions for further reading complete the text.

More books from Dover Publications

Cover of the book Philosophy and Civilization in the Middle Ages by John W. Lee, Ronald B. Guenther
Cover of the book Lettering by John W. Lee, Ronald B. Guenther
Cover of the book Card Manipulations by John W. Lee, Ronald B. Guenther
Cover of the book Applied Probability Models with Optimization Applications by John W. Lee, Ronald B. Guenther
Cover of the book Combinations by John W. Lee, Ronald B. Guenther
Cover of the book Selected Short Stories by John W. Lee, Ronald B. Guenther
Cover of the book Picture History of World War II American Aircraft Production by John W. Lee, Ronald B. Guenther
Cover of the book A Lost Lady by John W. Lee, Ronald B. Guenther
Cover of the book Big Book of Silhouettes by John W. Lee, Ronald B. Guenther
Cover of the book Hawthorne on Painting by John W. Lee, Ronald B. Guenther
Cover of the book The Dwellers on the Nile by John W. Lee, Ronald B. Guenther
Cover of the book William Blake's Divine Comedy Illustrations by John W. Lee, Ronald B. Guenther
Cover of the book The 100 Greatest Advertisements 1852-1958 by John W. Lee, Ronald B. Guenther
Cover of the book A Short History of Costume & Armour by John W. Lee, Ronald B. Guenther
Cover of the book Patriotism by John W. Lee, Ronald B. Guenther
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy