Oxide Materials at the Two-Dimensional Limit

Nonfiction, Science & Nature, Science, Physics, Solid State Physics, Technology, Material Science
Cover of the book Oxide Materials at the Two-Dimensional Limit by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319283326
Publisher: Springer International Publishing Publication: April 1, 2016
Imprint: Springer Language: English
Author:
ISBN: 9783319283326
Publisher: Springer International Publishing
Publication: April 1, 2016
Imprint: Springer
Language: English

This book summarizes the current knowledge of two-dimensional oxide materials. The fundamental properties of 2-D oxide systems are explored in terms of atomic structure, electronic behavior and surface chemistry. The concept of polarity in determining the stability of 2-D oxide layers is examined, charge transfer effects in ultrathin oxide films are reviewed as well as the role of defects in 2-D oxide films. The novel structure concepts that apply in oxide systems of low dimensionality are addressed, and a chapter giving an overview of state-of-the-art theoretical methods for electronic structure determination of nanostructured oxides is included. Special emphasis is given to a balanced view from the experimental and the theoretical side. Two-dimensional materials, and 2-D oxides in particular, have outstanding behavior due to dimensionality and proximity effects. Several chapters treat prototypical model systems as illustrative examples to discuss the peculiar physical and chemical properties of 2-D oxide systems. The chapters are written by renowned experts in the field.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book summarizes the current knowledge of two-dimensional oxide materials. The fundamental properties of 2-D oxide systems are explored in terms of atomic structure, electronic behavior and surface chemistry. The concept of polarity in determining the stability of 2-D oxide layers is examined, charge transfer effects in ultrathin oxide films are reviewed as well as the role of defects in 2-D oxide films. The novel structure concepts that apply in oxide systems of low dimensionality are addressed, and a chapter giving an overview of state-of-the-art theoretical methods for electronic structure determination of nanostructured oxides is included. Special emphasis is given to a balanced view from the experimental and the theoretical side. Two-dimensional materials, and 2-D oxides in particular, have outstanding behavior due to dimensionality and proximity effects. Several chapters treat prototypical model systems as illustrative examples to discuss the peculiar physical and chemical properties of 2-D oxide systems. The chapters are written by renowned experts in the field.

More books from Springer International Publishing

Cover of the book Groundwater and Global Change in the Western Mediterranean Area by
Cover of the book Handbook of Behavioral Criminology by
Cover of the book Visualizing Marketing by
Cover of the book Decision Support Systems III - Impact of Decision Support Systems for Global Environments by
Cover of the book Management of Post-Stroke Complications by
Cover of the book Research Perspectives on Work and the Transition to Motherhood by
Cover of the book BNAIC 2016: Artificial Intelligence by
Cover of the book Preparing for the Next Cyber Revolution by
Cover of the book Population Mobility, Urban Planning and Management in China by
Cover of the book Hypertension and Metabolic Cardiovascular Risk Factors by
Cover of the book Italian Renaissance Utopias by
Cover of the book Bowel Dysfunction by
Cover of the book The Figure of the Animal in Modern and Contemporary Poetry by
Cover of the book Higher Education: Handbook of Theory and Research by
Cover of the book Orthodox Christian Renewal Movements in Eastern Europe by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy