Optimal Control of Stochastic Difference Volterra Equations

An Introduction

Nonfiction, Science & Nature, Science, Other Sciences, System Theory, Technology, Automation
Cover of the book Optimal Control of Stochastic Difference Volterra Equations by Leonid Shaikhet, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Leonid Shaikhet ISBN: 9783319132396
Publisher: Springer International Publishing Publication: November 27, 2014
Imprint: Springer Language: English
Author: Leonid Shaikhet
ISBN: 9783319132396
Publisher: Springer International Publishing
Publication: November 27, 2014
Imprint: Springer
Language: English

This book showcases a subclass of hereditary systems, that is, systems with behaviour depending not only on their current state but also on their past history; it is an introduction to the mathematical theory of optimal control for stochastic difference Volterra equations of neutral type. As such, it will be of much interest to researchers interested in modelling processes in physics, mechanics, automatic regulation, economics and finance, biology, sociology and medicine for all of which such equations are very popular tools.

The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral stochastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for stochastic integral Volterra equations with optimal solutions for corresponding problems in stochastic difference Volterra equations.

Optimal Control of Stochastic Difference Volterra Equations commences with an historical introduction to the emergence of this type of equation with some additional mathematical preliminaries. It then deals with the necessary conditions for optimality in the control of the equations and constructs a feedback control scheme. The approximation of stochastic quasilinear Volterra equations with quadratic performance functionals is then considered. Optimal stabilization is discussed and the filtering problem formulated. Finally, two methods of solving the optimal control problem for partly observable linear stochastic processes, also with quadratic performance functionals, are developed.

Integrating the author’s own research within the context of the current state-of-the-art of research in difference equations, hereditary systems theory and optimal control, this book is addressed to specialists in mathematical optimal control theory and to graduate students in pure and applied mathematics and control engineering.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book showcases a subclass of hereditary systems, that is, systems with behaviour depending not only on their current state but also on their past history; it is an introduction to the mathematical theory of optimal control for stochastic difference Volterra equations of neutral type. As such, it will be of much interest to researchers interested in modelling processes in physics, mechanics, automatic regulation, economics and finance, biology, sociology and medicine for all of which such equations are very popular tools.

The text deals with problems of optimal control such as meeting given performance criteria, and stabilization, extending them to neutral stochastic difference Volterra equations. In particular, it contrasts the difference analogues of solutions to optimal control and optimal estimation problems for stochastic integral Volterra equations with optimal solutions for corresponding problems in stochastic difference Volterra equations.

Optimal Control of Stochastic Difference Volterra Equations commences with an historical introduction to the emergence of this type of equation with some additional mathematical preliminaries. It then deals with the necessary conditions for optimality in the control of the equations and constructs a feedback control scheme. The approximation of stochastic quasilinear Volterra equations with quadratic performance functionals is then considered. Optimal stabilization is discussed and the filtering problem formulated. Finally, two methods of solving the optimal control problem for partly observable linear stochastic processes, also with quadratic performance functionals, are developed.

Integrating the author’s own research within the context of the current state-of-the-art of research in difference equations, hereditary systems theory and optimal control, this book is addressed to specialists in mathematical optimal control theory and to graduate students in pure and applied mathematics and control engineering.

More books from Springer International Publishing

Cover of the book The Shadow of Black Holes by Leonid Shaikhet
Cover of the book Non-Hodgkin Lymphoma by Leonid Shaikhet
Cover of the book Top 50 Grammar Mistakes by Leonid Shaikhet
Cover of the book Quadrophenia and Mod(ern) Culture by Leonid Shaikhet
Cover of the book Platelets in Thrombotic and Non-Thrombotic Disorders by Leonid Shaikhet
Cover of the book Decoding the Antibody Repertoire by Leonid Shaikhet
Cover of the book Agent-Based Simulation of Organizational Behavior by Leonid Shaikhet
Cover of the book Resummation and Renormalization in Effective Theories of Particle Physics by Leonid Shaikhet
Cover of the book Connectomics in NeuroImaging by Leonid Shaikhet
Cover of the book The Management of Global Careers by Leonid Shaikhet
Cover of the book Cold War Energy by Leonid Shaikhet
Cover of the book Advances in Neurotechnology, Electronics and Informatics by Leonid Shaikhet
Cover of the book Public Management as Corporate Social Responsibility by Leonid Shaikhet
Cover of the book Sexual Health and Genital Medicine in Clinical Practice by Leonid Shaikhet
Cover of the book Data Analytics and Management in Data Intensive Domains by Leonid Shaikhet
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy