Operational Modal Analysis

Modeling, Bayesian Inference, Uncertainty Laws

Nonfiction, Science & Nature, Science, Physics, Mechanics, Earth Sciences, Technology
Cover of the book Operational Modal Analysis by Siu-Kui Au, Springer Singapore
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Siu-Kui Au ISBN: 9789811041181
Publisher: Springer Singapore Publication: June 25, 2017
Imprint: Springer Language: English
Author: Siu-Kui Au
ISBN: 9789811041181
Publisher: Springer Singapore
Publication: June 25, 2017
Imprint: Springer
Language: English

This book presents operational modal analysis (OMA), employing a coherent and comprehensive Bayesian framework for modal identification and covering stochastic modeling, theoretical formulations, computational algorithms, and practical applications. Mathematical similarities and philosophical differences between Bayesian and classical statistical approaches to system identification are discussed, allowing their mathematical tools to be shared and their results correctly interpreted. 

Many chapters can be used as lecture notes for the general topic they cover beyond the OMA context. After an introductory chapter (1), Chapters 2–7 present the general theory of stochastic modeling and analysis of ambient vibrations. Readers are first introduced to the spectral analysis of deterministic time series (2) and structural dynamics (3), which do not require the use of probability concepts. The concepts and techniques in these chapters are subsequently extended to a probabilistic context in Chapter 4 (on stochastic processes) and in Chapter 5 (on stochastic structural dynamics). In turn, Chapter 6 introduces the basics of ambient vibration instrumentation and data characteristics, while Chapter 7 discusses the analysis and simulation of OMA data, covering different types of data encountered in practice. Bayesian and classical statistical approaches to system identification are introduced in a general context in Chapters 8 and 9, respectively. 

Chapter 10 provides an overview of different Bayesian OMA formulations, followed by a general discussion of computational issues in Chapter 11. Efficient algorithms for different contexts are discussed in Chapters 12–14 (single mode, multi-mode, and multi-setup). Intended for readers with a minimal background in mathematics, Chapter 15 presents the ‘uncertainty laws’ in OMA, one of the latest advances that establish the achievable precision limit of OMA and provide a scientific basis for planning ambient vibration tests. Lastly Chapter 16 discusses the mathematical theory behind the results in Chapter 15, addressing the needs of researchers interested in learning the techniques for further development. Three appendix chapters round out the coverage.

This book is primarily intended for graduate/senior undergraduate students and researchers, although practitioners will also find the book a useful reference guide. It covers materials from introductory to advanced level, which are classified accordingly to ensure easy access. Readers with an undergraduate-level background in probability and statistics will find the book an invaluable resource, regardless of whether they are Bayesian or non-Bayesian.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This book presents operational modal analysis (OMA), employing a coherent and comprehensive Bayesian framework for modal identification and covering stochastic modeling, theoretical formulations, computational algorithms, and practical applications. Mathematical similarities and philosophical differences between Bayesian and classical statistical approaches to system identification are discussed, allowing their mathematical tools to be shared and their results correctly interpreted. 

Many chapters can be used as lecture notes for the general topic they cover beyond the OMA context. After an introductory chapter (1), Chapters 2–7 present the general theory of stochastic modeling and analysis of ambient vibrations. Readers are first introduced to the spectral analysis of deterministic time series (2) and structural dynamics (3), which do not require the use of probability concepts. The concepts and techniques in these chapters are subsequently extended to a probabilistic context in Chapter 4 (on stochastic processes) and in Chapter 5 (on stochastic structural dynamics). In turn, Chapter 6 introduces the basics of ambient vibration instrumentation and data characteristics, while Chapter 7 discusses the analysis and simulation of OMA data, covering different types of data encountered in practice. Bayesian and classical statistical approaches to system identification are introduced in a general context in Chapters 8 and 9, respectively. 

Chapter 10 provides an overview of different Bayesian OMA formulations, followed by a general discussion of computational issues in Chapter 11. Efficient algorithms for different contexts are discussed in Chapters 12–14 (single mode, multi-mode, and multi-setup). Intended for readers with a minimal background in mathematics, Chapter 15 presents the ‘uncertainty laws’ in OMA, one of the latest advances that establish the achievable precision limit of OMA and provide a scientific basis for planning ambient vibration tests. Lastly Chapter 16 discusses the mathematical theory behind the results in Chapter 15, addressing the needs of researchers interested in learning the techniques for further development. Three appendix chapters round out the coverage.

This book is primarily intended for graduate/senior undergraduate students and researchers, although practitioners will also find the book a useful reference guide. It covers materials from introductory to advanced level, which are classified accordingly to ensure easy access. Readers with an undergraduate-level background in probability and statistics will find the book an invaluable resource, regardless of whether they are Bayesian or non-Bayesian.

More books from Springer Singapore

Cover of the book Proceedings of the 28th Conference of Spacecraft TT&C Technology in China by Siu-Kui Au
Cover of the book Learning Path Construction in e-Learning by Siu-Kui Au
Cover of the book A Grammar of Kam Revealed in Its Narrative Discourse by Siu-Kui Au
Cover of the book Random Matrix Theory with an External Source by Siu-Kui Au
Cover of the book Audio Processing and Speech Recognition by Siu-Kui Au
Cover of the book Stochastic Flows and Jump-Diffusions by Siu-Kui Au
Cover of the book Strengthening and Joining by Plastic Deformation by Siu-Kui Au
Cover of the book Calculus for Cognitive Scientists by Siu-Kui Au
Cover of the book Human and Automatic Speaker Recognition over Telecommunication Channels by Siu-Kui Au
Cover of the book Sociological and Philosophical Perspectives on Education in the Asia-Pacific Region by Siu-Kui Au
Cover of the book Structural Hot-Spot Stress Approach to Fatigue Analysis of Welded Components by Siu-Kui Au
Cover of the book Computer Vision by Siu-Kui Au
Cover of the book Controlled Synthesis and Scanning Tunneling Microscopy Study of Graphene and Graphene-Based Heterostructures by Siu-Kui Au
Cover of the book Scaling up Assessment for Learning in Higher Education by Siu-Kui Au
Cover of the book Imitation, Counterfeiting and the Quality of Goods in Modern Asian History by Siu-Kui Au
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy