Nonparametric Bayesian Inference in Biostatistics

Nonfiction, Health & Well Being, Medical, Reference, Biostatistics, Science & Nature, Mathematics, Science, Biological Sciences
Cover of the book Nonparametric Bayesian Inference in Biostatistics by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319195186
Publisher: Springer International Publishing Publication: July 25, 2015
Imprint: Springer Language: English
Author:
ISBN: 9783319195186
Publisher: Springer International Publishing
Publication: July 25, 2015
Imprint: Springer
Language: English

As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.

 

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

As chapters in this book demonstrate, BNP has important uses in clinical sciences and inference for issues like unknown partitions in genomics. Nonparametric Bayesian approaches (BNP) play an ever expanding role in biostatistical inference from use in proteomics to clinical trials. Many research problems involve an abundance of data and require flexible and complex probability models beyond the traditional parametric approaches. As this book's expert contributors show, BNP approaches can be the answer. Survival Analysis, in particular survival regression, has traditionally used BNP, but BNP's potential is now very broad. This applies to important tasks like arrangement of patients into clinically meaningful subpopulations and segmenting the genome into functionally distinct regions. This book is designed to both review and introduce application areas for BNP. While existing books provide theoretical foundations, this book connects theory to practice through engaging examples and research questions. Chapters cover: clinical trials, spatial inference, proteomics, genomics, clustering, survival analysis and ROC curve.

 

More books from Springer International Publishing

Cover of the book Cuteness Engineering by
Cover of the book Respectable Deviance and Purchasing Medicine Online by
Cover of the book Measuring Scholarly Impact by
Cover of the book Computer Information Systems and Industrial Management by
Cover of the book The OECD and the International Political Economy Since 1948 by
Cover of the book D. H. Lawrence, Transport and Cultural Transition by
Cover of the book RF and Microwave Microelectronics Packaging II by
Cover of the book Saramago’s Philosophical Heritage by
Cover of the book Antisemitism Before and Since the Holocaust by
Cover of the book Maritime Psychology by
Cover of the book Herbert Fröhlich by
Cover of the book Nicaragua Before the International Court of Justice by
Cover of the book Trends and Applications in Knowledge Discovery and Data Mining by
Cover of the book A Different Approach to Work Discipline by
Cover of the book Future of CO2 Capture, Transport and Storage Projects by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy