Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers

Nonfiction, Science & Nature, Technology, Lasers, Science, Physics, Chaotic Behavior
Cover of the book Nonlinear Photonics in Mid-infrared Quantum Cascade Lasers by Louise Jumpertz, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Louise Jumpertz ISBN: 9783319658797
Publisher: Springer International Publishing Publication: August 31, 2017
Imprint: Springer Language: English
Author: Louise Jumpertz
ISBN: 9783319658797
Publisher: Springer International Publishing
Publication: August 31, 2017
Imprint: Springer
Language: English

This thesis presents the first comprehensive analysis of quantum cascade laser nonlinear dynamics and includes the first observation of a temporal chaotic behavior in quantum cascade lasers. It also provides the first analysis of optical instabilities in the mid-infrared range.

Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which have become widely used in applications such as gas spectroscopy, free-space communications or optical countermeasures. Applying external perturbations such as optical feedback or optical injection leads to a strong modification of the quantum cascade laser properties. Optical feedback impacts the static properties of mid-infrared Fabry–Perot and distributed feedback quantum cascade lasers, inducing power increase; threshold reduction; modification of the optical spectrum, which can become either single- or multimode; and enhanced beam quality in broad-area transverse multimode lasers. It also leads to a different dynamical behavior, and a quantum cascade laser subject to optical feedback can oscillate periodically or even become chaotic.  A quantum cascade laser under external control could therefore be a source with enhanced properties for the usual mid-infrared applications, but could also address new applications such as tunable photonic oscillators, extreme events generators, chaotic Light Detection and Ranging (LIDAR), chaos-based secured communications or unpredictable countermeasures.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This thesis presents the first comprehensive analysis of quantum cascade laser nonlinear dynamics and includes the first observation of a temporal chaotic behavior in quantum cascade lasers. It also provides the first analysis of optical instabilities in the mid-infrared range.

Mid-infrared quantum cascade lasers are unipolar semiconductor lasers, which have become widely used in applications such as gas spectroscopy, free-space communications or optical countermeasures. Applying external perturbations such as optical feedback or optical injection leads to a strong modification of the quantum cascade laser properties. Optical feedback impacts the static properties of mid-infrared Fabry–Perot and distributed feedback quantum cascade lasers, inducing power increase; threshold reduction; modification of the optical spectrum, which can become either single- or multimode; and enhanced beam quality in broad-area transverse multimode lasers. It also leads to a different dynamical behavior, and a quantum cascade laser subject to optical feedback can oscillate periodically or even become chaotic.  A quantum cascade laser under external control could therefore be a source with enhanced properties for the usual mid-infrared applications, but could also address new applications such as tunable photonic oscillators, extreme events generators, chaotic Light Detection and Ranging (LIDAR), chaos-based secured communications or unpredictable countermeasures.

More books from Springer International Publishing

Cover of the book Reassessing the Role of Management in the Golden Age by Louise Jumpertz
Cover of the book Business Resilience System (BRS): Driven Through Boolean, Fuzzy Logics and Cloud Computation by Louise Jumpertz
Cover of the book Hermeneutic Realism by Louise Jumpertz
Cover of the book Forging Connections between Computational Mathematics and Computational Geometry by Louise Jumpertz
Cover of the book Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing by Louise Jumpertz
Cover of the book Soviet Politics of Emancipation of Ethnic Minority Woman by Louise Jumpertz
Cover of the book Meta-Analysis with R by Louise Jumpertz
Cover of the book Symbolic Parallelization of Nested Loop Programs by Louise Jumpertz
Cover of the book Hybrid Artificial Intelligent Systems by Louise Jumpertz
Cover of the book Dynamics, Games and Science by Louise Jumpertz
Cover of the book Alessandro Torlonia by Louise Jumpertz
Cover of the book The Type Theory of Law by Louise Jumpertz
Cover of the book Techniques in Minimally Invasive Rectal Surgery by Louise Jumpertz
Cover of the book Supercomputing by Louise Jumpertz
Cover of the book Effect of Milk Fat Globule Size on the Physical Functionality of Dairy Products by Louise Jumpertz
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy