Non-Euclidean Geometry

Fifth Edition

Nonfiction, Science & Nature, Mathematics, Geometry
Cover of the book Non-Euclidean Geometry by H.S.M. Coxeter, University of Toronto Press, Scholarly Publishing Division
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: H.S.M. Coxeter ISBN: 9781442637740
Publisher: University of Toronto Press, Scholarly Publishing Division Publication: December 15, 1965
Imprint: Language: English
Author: H.S.M. Coxeter
ISBN: 9781442637740
Publisher: University of Toronto Press, Scholarly Publishing Division
Publication: December 15, 1965
Imprint:
Language: English

The name non-Euclidean was used by Gauss to describe a system of geometry which differs from Euclid's in its properties of parallelism. Such a system was developed independently by Bolyai in Hungary and Lobatschewsky in Russia, about 120 years ago. Another system, differing more radically from Euclid's, was suggested later by Riemann in Germany and Cayley in England. The subject was unified in 1871 by Klein, who gave the names of parabolic, hyperbolic, and elliptic to the respective systems of Euclid-Bolyai-Lobatschewsky, and Riemann-Cayley. Since then, a vast literature has accumulated.

The Fifth edition adds a new chapter, which includes a description of the two families of 'mid-lines' between two given lines, an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, a computation of the Gaussian curvature of the elliptic and hyperbolic planes, and a proof of Schlafli's remarkable formula for the differential of the volume of a tetrahedron.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The name non-Euclidean was used by Gauss to describe a system of geometry which differs from Euclid's in its properties of parallelism. Such a system was developed independently by Bolyai in Hungary and Lobatschewsky in Russia, about 120 years ago. Another system, differing more radically from Euclid's, was suggested later by Riemann in Germany and Cayley in England. The subject was unified in 1871 by Klein, who gave the names of parabolic, hyperbolic, and elliptic to the respective systems of Euclid-Bolyai-Lobatschewsky, and Riemann-Cayley. Since then, a vast literature has accumulated.

The Fifth edition adds a new chapter, which includes a description of the two families of 'mid-lines' between two given lines, an elementary derivation of the basic formulae of spherical trigonometry and hyperbolic trigonometry, a computation of the Gaussian curvature of the elliptic and hyperbolic planes, and a proof of Schlafli's remarkable formula for the differential of the volume of a tetrahedron.

More books from University of Toronto Press, Scholarly Publishing Division

Cover of the book The Voyages of Jacques Cartier by H.S.M. Coxeter
Cover of the book Gompers in Canada by H.S.M. Coxeter
Cover of the book The German Right, 1860-1920 by H.S.M. Coxeter
Cover of the book Boccaccio's Naked Muse by H.S.M. Coxeter
Cover of the book Sidney Earle Smith by H.S.M. Coxeter
Cover of the book The Court of Sapience by H.S.M. Coxeter
Cover of the book Dying from Improvement by H.S.M. Coxeter
Cover of the book The Laughter of the Saints by H.S.M. Coxeter
Cover of the book Tumultuous Decade by H.S.M. Coxeter
Cover of the book In the Belly of a Laughing God by H.S.M. Coxeter
Cover of the book A World of Love and Mystery by H.S.M. Coxeter
Cover of the book Artistry Unleashed by H.S.M. Coxeter
Cover of the book Creating Healthy Organizations by H.S.M. Coxeter
Cover of the book Italian Modernism by H.S.M. Coxeter
Cover of the book Voices From the Voluntary Sector by H.S.M. Coxeter
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy