Noise Sensitivity of Boolean Functions and Percolation

Nonfiction, Science & Nature, Mathematics, Statistics, Science
Cover of the book Noise Sensitivity of Boolean Functions and Percolation by Christophe Garban, Jeffrey E. Steif, Cambridge University Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Christophe Garban, Jeffrey E. Steif ISBN: 9781316120620
Publisher: Cambridge University Press Publication: December 22, 2014
Imprint: Cambridge University Press Language: English
Author: Christophe Garban, Jeffrey E. Steif
ISBN: 9781316120620
Publisher: Cambridge University Press
Publication: December 22, 2014
Imprint: Cambridge University Press
Language: English

This is a graduate-level introduction to the theory of Boolean functions, an exciting area lying on the border of probability theory, discrete mathematics, analysis, and theoretical computer science. Certain functions are highly sensitive to noise; this can be seen via Fourier analysis on the hypercube. The key model analyzed in depth is critical percolation on the hexagonal lattice. For this model, the critical exponents, previously determined using the now-famous Schramm–Loewner evolution, appear here in the study of sensitivity behavior. Even for this relatively simple model, beyond the Fourier-analytic set-up, there are three crucially important but distinct approaches: hypercontractivity of operators, connections to randomized algorithms, and viewing the spectrum as a random Cantor set. This book assumes a basic background in probability theory and integration theory. Each chapter ends with exercises, some straightforward, some challenging.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This is a graduate-level introduction to the theory of Boolean functions, an exciting area lying on the border of probability theory, discrete mathematics, analysis, and theoretical computer science. Certain functions are highly sensitive to noise; this can be seen via Fourier analysis on the hypercube. The key model analyzed in depth is critical percolation on the hexagonal lattice. For this model, the critical exponents, previously determined using the now-famous Schramm–Loewner evolution, appear here in the study of sensitivity behavior. Even for this relatively simple model, beyond the Fourier-analytic set-up, there are three crucially important but distinct approaches: hypercontractivity of operators, connections to randomized algorithms, and viewing the spectrum as a random Cantor set. This book assumes a basic background in probability theory and integration theory. Each chapter ends with exercises, some straightforward, some challenging.

More books from Cambridge University Press

Cover of the book Modernism and Popular Music by Christophe Garban, Jeffrey E. Steif
Cover of the book The Roman Monetary System by Christophe Garban, Jeffrey E. Steif
Cover of the book Bioinformatics for Biologists by Christophe Garban, Jeffrey E. Steif
Cover of the book The Sources of Normativity by Christophe Garban, Jeffrey E. Steif
Cover of the book Researching the Autism Spectrum by Christophe Garban, Jeffrey E. Steif
Cover of the book Who Elected Oxfam? by Christophe Garban, Jeffrey E. Steif
Cover of the book Introduction to the Physics of Waves by Christophe Garban, Jeffrey E. Steif
Cover of the book Time Limited Interests in Land by Christophe Garban, Jeffrey E. Steif
Cover of the book Risk Management in the Outdoors by Christophe Garban, Jeffrey E. Steif
Cover of the book Foundations of Radio for Scientists and Technologists by Christophe Garban, Jeffrey E. Steif
Cover of the book Voting Behavior in Indonesia since Democratization by Christophe Garban, Jeffrey E. Steif
Cover of the book The Economic Theory of Eminent Domain by Christophe Garban, Jeffrey E. Steif
Cover of the book The Cambridge Guide to the Solar System by Christophe Garban, Jeffrey E. Steif
Cover of the book The Politics of Crowds by Christophe Garban, Jeffrey E. Steif
Cover of the book Pretense and Pathology by Christophe Garban, Jeffrey E. Steif
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy