NASA Space Technology Report: Pogo in Rockets and Launch Vehicles - Pogo Suppression, Experience with Gemini/Titan, Saturn V and Potential Catastrophic Structural Failure on Apollo 13 Mission

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics
Cover of the book NASA Space Technology Report: Pogo in Rockets and Launch Vehicles - Pogo Suppression, Experience with Gemini/Titan, Saturn V and Potential Catastrophic Structural Failure on Apollo 13 Mission by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781310077555
Publisher: Progressive Management Publication: August 14, 2014
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781310077555
Publisher: Progressive Management
Publication: August 14, 2014
Imprint: Smashwords Edition
Language: English

Two reports from NASA describe the "pogo" problem found in liquid-propellant rockets and launch vehicles: Prevention of Coupled Structure-Propulsion Instability (Pogo) - NASA Space Vehicle Design Criteria (Structures), NASA Experience with Pogo in Human Spaceflight Vehicles.

An overview of more than 45 years of NASA human spaceflight experience is presented with respect to the thrust axis vibration response of liquid fueled rockets known as pogo. A coupled structure and propulsion system instability, pogo can result in the impairment of the astronaut crew, an unplanned engine shutdown, loss of mission, or structural failure. The NASA history begins with the Gemini Program and adaptation of the USAF Titan II ballistic missile as a spacecraft launch vehicle. It continues with the pogo experienced on several Apollo-Saturn flights in both the first and second stages of flight. The defining moment for NASA's subsequent treatment of pogo occurred with the near failure of the second stage on the ascent of the Apollo 13 mission. Since that time NASA has had a strict "no pogo" philosophy that was applied to the development of the Space Shuttle. The "no pogo" philosophy lead to the first vehicle designed to be pogo-free from the beginning and the first development of an engine with an integral pogo suppression system.

NASA first identified pogo as a threat to spaceflight vehicles and their crews in the early 1960's during the Gemini-Titan II program. The Gemini spacecraft was to be a two-person vehicle with significant improvements in spacecraft design over that of the Mercury spacecraft, principally for simplified systems check-out and operations, and increased crew piloting functions. In particular, the Gemini project manager considered the event sequencing for the Mercury escape system as "...one of the major problem areas in Mercury in all its aspects - its mechanical aspects in the first part of the program, and the electronic aspects later." Thus the new design of the Gemini spacecraft eliminated the escape rocket tower used in Mercury and put the crew in ejection seats.

Apollo 13 launched on April 11, 1970. During the second stage burn, two episodes of pogo occurred on the center J-2 engine as expected from previous missions, but the third occurrence diverged severely and acceleration at the engine attachment reached an estimated 34 g's (the accelerometer went out of range) before the engine's combustion chamber low-level pressure sensor commanded a shut down. It was estimated in the post-flight investigation that only one more cycle of amplitude growth could have been sustained without catastrophic structural failure.

Prevention of Coupled Structure-Propulsion Instability (Pogo) - 1. INTRODUCTION * 2. STATE OF THE ART * 2.1 Mathematical Models * 2.1.1 Structural Modeling * 2.1.2 Propulsion-System Modeling * 2.2 Stability Analysis * 2.3 Corrective Devices or Modifications * 2.4 Flight Evaluation * 3. CRITERIA * 3.1 Mathematical Models * 3.2 Preflight Tests * 3.3 Stability Analysis * 3.4 Corrective Devices or Modifications * 3.5 Flight Evaluation * 4. RECOMMENDED PRACTICES * 4.1 Mathematical Models * 4.1.1 Structural Modeling * 4.1.2 Propulsion-System Modeling * 4.2 Preflight Tests * 4.2.1 Structural Testing * 4.2.2 Normal Propulsion-Development Testing * 4.2.3 Special Propulsion Testing * 4.3 Stability Analysis * 4.4 Corrective Devices or Modifications * 4.5 Flight Evaluation * APPENDIX * Assessment of Significance of Structural Modes *REFERENCES

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Two reports from NASA describe the "pogo" problem found in liquid-propellant rockets and launch vehicles: Prevention of Coupled Structure-Propulsion Instability (Pogo) - NASA Space Vehicle Design Criteria (Structures), NASA Experience with Pogo in Human Spaceflight Vehicles.

An overview of more than 45 years of NASA human spaceflight experience is presented with respect to the thrust axis vibration response of liquid fueled rockets known as pogo. A coupled structure and propulsion system instability, pogo can result in the impairment of the astronaut crew, an unplanned engine shutdown, loss of mission, or structural failure. The NASA history begins with the Gemini Program and adaptation of the USAF Titan II ballistic missile as a spacecraft launch vehicle. It continues with the pogo experienced on several Apollo-Saturn flights in both the first and second stages of flight. The defining moment for NASA's subsequent treatment of pogo occurred with the near failure of the second stage on the ascent of the Apollo 13 mission. Since that time NASA has had a strict "no pogo" philosophy that was applied to the development of the Space Shuttle. The "no pogo" philosophy lead to the first vehicle designed to be pogo-free from the beginning and the first development of an engine with an integral pogo suppression system.

NASA first identified pogo as a threat to spaceflight vehicles and their crews in the early 1960's during the Gemini-Titan II program. The Gemini spacecraft was to be a two-person vehicle with significant improvements in spacecraft design over that of the Mercury spacecraft, principally for simplified systems check-out and operations, and increased crew piloting functions. In particular, the Gemini project manager considered the event sequencing for the Mercury escape system as "...one of the major problem areas in Mercury in all its aspects - its mechanical aspects in the first part of the program, and the electronic aspects later." Thus the new design of the Gemini spacecraft eliminated the escape rocket tower used in Mercury and put the crew in ejection seats.

Apollo 13 launched on April 11, 1970. During the second stage burn, two episodes of pogo occurred on the center J-2 engine as expected from previous missions, but the third occurrence diverged severely and acceleration at the engine attachment reached an estimated 34 g's (the accelerometer went out of range) before the engine's combustion chamber low-level pressure sensor commanded a shut down. It was estimated in the post-flight investigation that only one more cycle of amplitude growth could have been sustained without catastrophic structural failure.

Prevention of Coupled Structure-Propulsion Instability (Pogo) - 1. INTRODUCTION * 2. STATE OF THE ART * 2.1 Mathematical Models * 2.1.1 Structural Modeling * 2.1.2 Propulsion-System Modeling * 2.2 Stability Analysis * 2.3 Corrective Devices or Modifications * 2.4 Flight Evaluation * 3. CRITERIA * 3.1 Mathematical Models * 3.2 Preflight Tests * 3.3 Stability Analysis * 3.4 Corrective Devices or Modifications * 3.5 Flight Evaluation * 4. RECOMMENDED PRACTICES * 4.1 Mathematical Models * 4.1.1 Structural Modeling * 4.1.2 Propulsion-System Modeling * 4.2 Preflight Tests * 4.2.1 Structural Testing * 4.2.2 Normal Propulsion-Development Testing * 4.2.3 Special Propulsion Testing * 4.3 Stability Analysis * 4.4 Corrective Devices or Modifications * 4.5 Flight Evaluation * APPENDIX * Assessment of Significance of Structural Modes *REFERENCES

More books from Progressive Management

Cover of the book The Development of the Base Force 1989: 1992, Work of General Colin Powell, Dick Cheney, Paul Wolfowitz, Changes in Strategic Thinking by Progressive Management
Cover of the book Evolution of United States Army Deployment Operations: The Santiago Campaign Expedition’s Mobilization through Tampa, Florida in 1898 to Prepare for Invasion of Cuba, Reception and Staging Process by Progressive Management
Cover of the book Army Research Laboratory (ARL) Programs and Research: Computing, Chemical Sciences, Life Sciences, Materials, Mathematics, Physics, Electronics, Mechanical Science, Environmental Sciences by Progressive Management
Cover of the book The Rationale of Political Assassinations: Context, Logic, Landscape and General Trends, Causes, Facilitators, Consequences, Policy Implications, Coups D'etat, Typologies, Targets, Heads of State by Progressive Management
Cover of the book Oil Spills in Arctic Waters: An Introduction and Inventory of Research Activities and USARC Recommendations - Mitigation, Containment, Countermeasures, Cleanup and Recovery, Environmental Effects by Progressive Management
Cover of the book A History of Suction-Type Laminar-Flow Control with Emphasis on Flight Research: From the 1930s to the X-21 and the Boeing 757, Swept Wings, Noise, Insect Contamination, Ice Particles, Supersonic by Progressive Management
Cover of the book Explosive Accident Summary: World War II - Foundation of Ordnance Safety Program, Log of Major Accidents in Second World War, Plant Disasters, Ship Explosions, Reporting Future by Progressive Management
Cover of the book Bringing the Future Within Reach: Celebrating 75 Years of the NASA John H. Glenn Research Center - Lewis Center, Jet and Nuclear Propulsion, Wind Tunnels, Liquid Hydrogen, Centaur, Mercury, Apollo by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: U.S. Marine Corps (USMC) Marine Corps Values: A User's Guide for Discussion Leaders (Value-Added Professional Format Series) by Progressive Management
Cover of the book Guide to Managing an Emergency Service Infection Control Program: Bloodborne and Airborne Diseases, EMS Policies, Vehicles, Equipment, and Supply Considerations, Training, Patient Protection by Progressive Management
Cover of the book 21st Century U.S. Military Manuals: Police Intelligence Operations Field Manual - FM 3-19.50 (Value-Added Professional Format Series) by Progressive Management
Cover of the book China's Forbearance Has Limits: Chinese Threat and Retaliation Signaling and Its Implications for a Sino-American Military Confrontation - Maritime Claims, Senkaku and Spratly Islands, Taiwan by Progressive Management
Cover of the book 21st Century FEMA Study Course: Improving Preparedness and Resilience through Public-Private Partnerships (IS-662) by Progressive Management
Cover of the book Project on National Security Reform: Case Studies Working Group Report, Volume II - Biodefense, Unconventional Threats, Homeland Security, Financial Crisis, Terrorism, Iran-Contra, Nixon, Bush, Gore by Progressive Management
Cover of the book Putin's Propaganda War: Is He Winning? 2018 Analysis of Belarus, Kazakhstan, Latvia, France, Germany, and Finland Highlighting Source of Russian Influence, Fighting Kremlin's Information War by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy