Nanophononics

Thermal Generation, Transport, and Conversion at the Nanoscale

Nonfiction, Science & Nature, Technology, Material Science, Science, Physics, General Physics
Cover of the book Nanophononics by Zlatan Aksamija, Jenny Stanford Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Zlatan Aksamija ISBN: 9781351609432
Publisher: Jenny Stanford Publishing Publication: November 22, 2017
Imprint: Jenny Stanford Publishing Language: English
Author: Zlatan Aksamija
ISBN: 9781351609432
Publisher: Jenny Stanford Publishing
Publication: November 22, 2017
Imprint: Jenny Stanford Publishing
Language: English

Heat in most semiconductor materials, including the traditional group IV elements (Si, Ge, diamond), III–V compounds (GaAs, wide-bandgap GaN), and carbon allotropes (graphene, CNTs), as well as emerging new materials like transition metal dichalcogenides (TMDCs), is stored and transported by lattice vibrations (phonons). Phonon generation through interactions with electrons (in nanoelectronics, power, and nonequilibrium devices) and light (optoelectronics) is the central mechanism of heat dissipation in nanoelectronics.

This book focuses on the area of thermal effects in nanostructures, including the generation, transport, and conversion of heat at the nanoscale level. Phonon transport, including thermal conductivity in nanostructured materials, as well as numerical simulation methods, such as phonon Monte Carlo, Green’s functions, and first principles methods, feature prominently in the book, which comprises four main themes: (i) phonon generation/heat dissipation, (i) nanoscale phonon transport, (iii) applications/devices (including thermoelectrics), and (iv) emerging materials (graphene/2D). The book also covers recent advances in nanophononics—the study of phonons at the nanoscale. Applications of nanophononics focus on thermoelectric (TE) and tandem TE/photovoltaic energy conversion. The applications are augmented by a chapter on heat dissipation and self-heating in nanoelectronic devices. The book concludes with a chapter on thermal transport in nanoscale graphene ribbons, covering recent advances in phonon transport in 2D materials.

The book will be an excellent reference for researchers and graduate students of nanoelectronics, device engineering, nanoscale heat transfer, and thermoelectric energy conversion. The book could also be a basis for a graduate special topics course in the field of nanoscale heat and energy.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Heat in most semiconductor materials, including the traditional group IV elements (Si, Ge, diamond), III–V compounds (GaAs, wide-bandgap GaN), and carbon allotropes (graphene, CNTs), as well as emerging new materials like transition metal dichalcogenides (TMDCs), is stored and transported by lattice vibrations (phonons). Phonon generation through interactions with electrons (in nanoelectronics, power, and nonequilibrium devices) and light (optoelectronics) is the central mechanism of heat dissipation in nanoelectronics.

This book focuses on the area of thermal effects in nanostructures, including the generation, transport, and conversion of heat at the nanoscale level. Phonon transport, including thermal conductivity in nanostructured materials, as well as numerical simulation methods, such as phonon Monte Carlo, Green’s functions, and first principles methods, feature prominently in the book, which comprises four main themes: (i) phonon generation/heat dissipation, (i) nanoscale phonon transport, (iii) applications/devices (including thermoelectrics), and (iv) emerging materials (graphene/2D). The book also covers recent advances in nanophononics—the study of phonons at the nanoscale. Applications of nanophononics focus on thermoelectric (TE) and tandem TE/photovoltaic energy conversion. The applications are augmented by a chapter on heat dissipation and self-heating in nanoelectronic devices. The book concludes with a chapter on thermal transport in nanoscale graphene ribbons, covering recent advances in phonon transport in 2D materials.

The book will be an excellent reference for researchers and graduate students of nanoelectronics, device engineering, nanoscale heat transfer, and thermoelectric energy conversion. The book could also be a basis for a graduate special topics course in the field of nanoscale heat and energy.

More books from Jenny Stanford Publishing

Cover of the book Poorly Soluble Drugs by Zlatan Aksamija
Cover of the book Electronic Devices Architectures for the NANO-CMOS Era by Zlatan Aksamija
Cover of the book Nanotechnology and Energy by Zlatan Aksamija
Cover of the book Self-Assembled Organic-Inorganic Nanostructures by Zlatan Aksamija
Cover of the book Handbook of Full-Field Optical Coherence Microscopy by Zlatan Aksamija
Cover of the book Bioinspired Superhydrophobic Surfaces by Zlatan Aksamija
Cover of the book Ultrafast Dynamics at the Nanoscale by Zlatan Aksamija
Cover of the book Fluorine Magnetic Resonance Imaging by Zlatan Aksamija
Cover of the book Nanoparticles in Humans by Zlatan Aksamija
Cover of the book The Social Effects of Global Trade by Zlatan Aksamija
Cover of the book Sun Towards High Noon by Zlatan Aksamija
Cover of the book Tissue Phenomics: Profiling Cancer Patients for Treatment Decisions by Zlatan Aksamija
Cover of the book Deep Brain Stimulation by Zlatan Aksamija
Cover of the book Mastering Technical Communication Skills by Zlatan Aksamija
Cover of the book Quantum Physics for Beginners by Zlatan Aksamija
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy