Nanomechanical and Nanoelectromechanical Phenomena in 2D Atomic Crystals

A Scanning Probe Microscopy Approach

Nonfiction, Science & Nature, Technology, Nanotechnology, Science, Physics, Solid State Physics
Cover of the book Nanomechanical and Nanoelectromechanical Phenomena in 2D Atomic Crystals by Nicholas D. Kay, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Nicholas D. Kay ISBN: 9783319701813
Publisher: Springer International Publishing Publication: November 27, 2017
Imprint: Springer Language: English
Author: Nicholas D. Kay
ISBN: 9783319701813
Publisher: Springer International Publishing
Publication: November 27, 2017
Imprint: Springer
Language: English

This thesis introduces a unique approach of applying atomic force microscopy to study the nanoelectromechanical properties of 2D materials, providing high-resolution computer-generated imagery (CGI) and diagrams to aid readers’ understanding and visualization. The isolation of graphene and, shortly after, a host of other 2D materials has attracted a great deal of interest in the scientific community for both their range of extremely desirable and their record-breaking properties. Amongst these properties are some of the highest elastic moduli and tensile strengths ever observed in nature. The work, which was undertaken at Lancaster University’s Physics department in conjunction with the University of Manchester and the National Physical Laboratory, offers a new approach to understanding the nanomechanical and nanoelectromechanical properties of 2D materials by utilising the nanoscale and nanosecond resolution of ultrasonic force and heterodyne force microscopy (UFM and HFM) – both contact mode atomic force microscopy (AFM) techniques. Using this approach and developing several other new techniques the authors succeeded in probing samples’ subsurface and mechanical properties, which would otherwise remain hidden. Lastly, by using a new technique, coined electrostatic heterodyne force microscopy (E-HFM), the authors were able to observe nanoscale electromechanical vibrations with a nanometre and nanosecond resolution, in addition to probing the local electrostatic environment of devices fabricated from 2D materials.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This thesis introduces a unique approach of applying atomic force microscopy to study the nanoelectromechanical properties of 2D materials, providing high-resolution computer-generated imagery (CGI) and diagrams to aid readers’ understanding and visualization. The isolation of graphene and, shortly after, a host of other 2D materials has attracted a great deal of interest in the scientific community for both their range of extremely desirable and their record-breaking properties. Amongst these properties are some of the highest elastic moduli and tensile strengths ever observed in nature. The work, which was undertaken at Lancaster University’s Physics department in conjunction with the University of Manchester and the National Physical Laboratory, offers a new approach to understanding the nanomechanical and nanoelectromechanical properties of 2D materials by utilising the nanoscale and nanosecond resolution of ultrasonic force and heterodyne force microscopy (UFM and HFM) – both contact mode atomic force microscopy (AFM) techniques. Using this approach and developing several other new techniques the authors succeeded in probing samples’ subsurface and mechanical properties, which would otherwise remain hidden. Lastly, by using a new technique, coined electrostatic heterodyne force microscopy (E-HFM), the authors were able to observe nanoscale electromechanical vibrations with a nanometre and nanosecond resolution, in addition to probing the local electrostatic environment of devices fabricated from 2D materials.

More books from Springer International Publishing

Cover of the book Contextual Cognition by Nicholas D. Kay
Cover of the book Psychosocial Stress and Cardiovascular Disease in Women by Nicholas D. Kay
Cover of the book Stochastic Porous Media Equations by Nicholas D. Kay
Cover of the book Richard Ned Lebow: Major Texts on Methods and Philosophy of Science by Nicholas D. Kay
Cover of the book Science Education: A Global Perspective by Nicholas D. Kay
Cover of the book Religious Epiphanies Across Traditions and Cultures by Nicholas D. Kay
Cover of the book Artificial Intelligence Applications and Innovations by Nicholas D. Kay
Cover of the book Prominent Feature Extraction for Sentiment Analysis by Nicholas D. Kay
Cover of the book Guide to Data Structures by Nicholas D. Kay
Cover of the book Transcriptional Control of Lineage Differentiation in Immune Cells by Nicholas D. Kay
Cover of the book Philosophy in Stan Brakhage's Dog Star Man by Nicholas D. Kay
Cover of the book Practical Boundary Surveying by Nicholas D. Kay
Cover of the book Queueing Theory and Network Applications by Nicholas D. Kay
Cover of the book Pollination Biology, Vol.1 by Nicholas D. Kay
Cover of the book Analysis of Large and Complex Data by Nicholas D. Kay
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy