Muscle Biophysics

From Molecules to Cells

Nonfiction, Science & Nature, Science, Biological Sciences, Biophysics, Biochemistry
Cover of the book Muscle Biophysics by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781441963666
Publisher: Springer New York Publication: September 8, 2010
Imprint: Springer Language: English
Author:
ISBN: 9781441963666
Publisher: Springer New York
Publication: September 8, 2010
Imprint: Springer
Language: English

Muscle contraction has been the focus of scientific investigation for more than two centuries, and major discoveries have changed the field over the years. Early in the twentieth century, Fenn (1924, 1923) showed that the total energy liberated during a contraction (heat + work) was increased when the muscle was allowed to shorten and perform work. The result implied that chemical reactions during contractions were load-dependent. The observation underlying the “Fenn effect” was taken to a greater extent when Hill (1938) published a pivotal study showing in details the relation between heat production and the amount of muscle shortening, providing investigators with the force-velocity relation for skeletal muscles. Subsequently, two papers paved the way for the current paradigm in the field of muscle contraction. Huxley and Niedergerke (1954), and Huxley and Hanson (1954) showed that the width of the A-bands did not change during muscle stretch or activation. Contraction, previously believed to be caused by shortening of muscle filaments, was associated with sliding of the thick and thin filaments. These studies were followed by the classic paper by Huxley (1957), in which he conceptualized for the first time the cross-bridge theory; filament sliding was driven by the cyclical interactions of myosin heads (cross-bridges) with actin. The original cross-bridge theory has been revised over the years but the basic features have remained mostly intact. It now influences studies performed with molecular motors responsible for tasks as diverse as muscle contraction, cell division and vesicle transport.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Muscle contraction has been the focus of scientific investigation for more than two centuries, and major discoveries have changed the field over the years. Early in the twentieth century, Fenn (1924, 1923) showed that the total energy liberated during a contraction (heat + work) was increased when the muscle was allowed to shorten and perform work. The result implied that chemical reactions during contractions were load-dependent. The observation underlying the “Fenn effect” was taken to a greater extent when Hill (1938) published a pivotal study showing in details the relation between heat production and the amount of muscle shortening, providing investigators with the force-velocity relation for skeletal muscles. Subsequently, two papers paved the way for the current paradigm in the field of muscle contraction. Huxley and Niedergerke (1954), and Huxley and Hanson (1954) showed that the width of the A-bands did not change during muscle stretch or activation. Contraction, previously believed to be caused by shortening of muscle filaments, was associated with sliding of the thick and thin filaments. These studies were followed by the classic paper by Huxley (1957), in which he conceptualized for the first time the cross-bridge theory; filament sliding was driven by the cyclical interactions of myosin heads (cross-bridges) with actin. The original cross-bridge theory has been revised over the years but the basic features have remained mostly intact. It now influences studies performed with molecular motors responsible for tasks as diverse as muscle contraction, cell division and vesicle transport.

More books from Springer New York

Cover of the book Lesson Play in Mathematics Education: by
Cover of the book Management of Headache and Headache Medications by
Cover of the book Tribology for Scientists and Engineers by
Cover of the book Neurobiological Studies of Addiction in Chronic Pain States by
Cover of the book Residue Reviews by
Cover of the book Heteromagnetic Microelectronics by
Cover of the book National Intellectual Capital and the Financial Crisis in Australia, Canada, Japan, New Zealand, and the United States by
Cover of the book Diplomacy and Negotiation for Humanitarian NGOs by
Cover of the book MR Spectroscopy of Pediatric Brain Disorders by
Cover of the book Multiresonator-Based Chipless RFID by
Cover of the book Reconfigurable Switched-Capacitor Power Converters by
Cover of the book Emergency Neurology by
Cover of the book Passing the USMLE by
Cover of the book Fundamentals of Maxillofacial Surgery by
Cover of the book Molecular Basis of Reproductive Endocrinology by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy