Molecular Aspects of Bioelectricity

Nonfiction, Science & Nature, Nature, Animals, Mammals, Science, Biological Sciences, Zoology
Cover of the book Molecular Aspects of Bioelectricity by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781483189857
Publisher: Elsevier Science Publication: April 24, 2014
Imprint: Pergamon Language: English
Author:
ISBN: 9781483189857
Publisher: Elsevier Science
Publication: April 24, 2014
Imprint: Pergamon
Language: English

Molecular Aspects of Bioelectricity describes the self-organization in molecular and cellular networks. This book evaluates the chemical representation of ion flux gating in excitable biomembranes and addresses the theoretical implication of liganding reactions in axonal sodium channel gating. It also strongly demonstrates the ligand interactions of crustacean axonal membrane.
The opening chapters deal with the biochemical studies of the structure, mechanism, and differentiation of the voltage-sensitive sodium channel; and biochemical cycle of impedance variation in axonal membranes. The succeeding chapters examine the effect of various compounds on the phosphorylation of nerve proteins and the molecular aspects of the actions of cyclic nucleotides at synapses. These topics are followed by discussions of the acetylcholine and choline acetyltransferase, as well as the polymorphism of cholinesterase in vertebrates. The closing chapters are devoted to the physical factors determining gated flux from and into sealed membrane fragments.
The book can provide useful information to biologists, students, and researchers.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Molecular Aspects of Bioelectricity describes the self-organization in molecular and cellular networks. This book evaluates the chemical representation of ion flux gating in excitable biomembranes and addresses the theoretical implication of liganding reactions in axonal sodium channel gating. It also strongly demonstrates the ligand interactions of crustacean axonal membrane.
The opening chapters deal with the biochemical studies of the structure, mechanism, and differentiation of the voltage-sensitive sodium channel; and biochemical cycle of impedance variation in axonal membranes. The succeeding chapters examine the effect of various compounds on the phosphorylation of nerve proteins and the molecular aspects of the actions of cyclic nucleotides at synapses. These topics are followed by discussions of the acetylcholine and choline acetyltransferase, as well as the polymorphism of cholinesterase in vertebrates. The closing chapters are devoted to the physical factors determining gated flux from and into sealed membrane fragments.
The book can provide useful information to biologists, students, and researchers.

More books from Elsevier Science

Cover of the book Management of Periprosthetic Joint Infections (PJIs) by
Cover of the book Encyclopedia of Violence, Peace, and Conflict by
Cover of the book Numerical Methods for Roots of Polynomials - Part II by
Cover of the book Computational Economics: Heterogeneous Agent Modeling by
Cover of the book Refining Processes Handbook by
Cover of the book Global Ergonomics by
Cover of the book The Soft Tissues by
Cover of the book Epidemiology and Medical Statistics by
Cover of the book A Practical Guide to Writing a Ruth L. Kirschstein NRSA Grant by
Cover of the book Positive Youth Development by
Cover of the book Nano-inspired Biosensors for Protein Assay with Clinical Applications by
Cover of the book Guide to Human Genome Computing by
Cover of the book Cisco Security Professional's Guide to Secure Intrusion Detection Systems by
Cover of the book Subsea Pipeline Integrity and Risk Management by
Cover of the book Common Well Control Hazards by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy