Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites

Nonfiction, Science & Nature, Technology, Material Science
Cover of the book Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites by , Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9780081022979
Publisher: Elsevier Science Publication: November 23, 2018
Imprint: Woodhead Publishing Language: English
Author:
ISBN: 9780081022979
Publisher: Elsevier Science
Publication: November 23, 2018
Imprint: Woodhead Publishing
Language: English

Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites focuses on the advanced characterization techniques used for the analysis of composite materials developed from natural fiber/biomass, synthetic fibers and a combination of these materials used as fillers and reinforcements to enhance materials performance and utilization in automotive, aerospace, construction and building components. It will act as a detailed reference resource to encourage future research in natural fiber and hybrid composite materials, an area much in demand due to the need for more sustainable, recyclable, and eco-friendly composites in a broad range of applications.

Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials.

  • Contains contributions from leading experts in the field
  • Discusses recent progress on failure analysis, SHM, durability, life prediction and the modelling of damage in natural fiber-based composite materials
  • Covers experimental, analytical and numerical analysis
  • Provides detailed and comprehensive information on mechanical properties, testing methods and modelling techniques
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Modelling of Damage Processes in Biocomposites, Fibre-Reinforced Composites and Hybrid Composites focuses on the advanced characterization techniques used for the analysis of composite materials developed from natural fiber/biomass, synthetic fibers and a combination of these materials used as fillers and reinforcements to enhance materials performance and utilization in automotive, aerospace, construction and building components. It will act as a detailed reference resource to encourage future research in natural fiber and hybrid composite materials, an area much in demand due to the need for more sustainable, recyclable, and eco-friendly composites in a broad range of applications.

Written by leading experts in the field, and covering composite materials developed from different natural fibers and their hybridization with synthetic fibers, the book's chapters provide cutting-edge, up-to-date research on the characterization, analysis and modelling of composite materials.

More books from Elsevier Science

Cover of the book Monoclonal Antibodies by
Cover of the book Handbook of Advanced Ceramics by
Cover of the book The Synchronized Dynamics of Complex Systems by
Cover of the book Earth's Oldest Rocks by
Cover of the book MICRO 2016: Fate and Impact of Microplastics in Marine Ecosystems by
Cover of the book Annual Reports on NMR Spectroscopy by
Cover of the book Fossil Parasites by
Cover of the book G Protein-Coupled Receptors: Emerging Paradigms in Activation, Signaling and Regulation Part A by
Cover of the book Yogurt in Health and Disease Prevention by
Cover of the book Methods in Consumer Research, Volume 1 by
Cover of the book Eco-efficient Masonry Bricks and Blocks by
Cover of the book The Rubber Formulary by
Cover of the book Epigenetics of Aging and Longevity by
Cover of the book Space, Time and Number in the Brain by
Cover of the book Biomedical Engineering IV by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy