Micromechanics of Granular Materials

Nonfiction, Science & Nature, Science, Chemistry, Physical & Theoretical
Cover of the book Micromechanics of Granular Materials by , Wiley
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781118623084
Publisher: Wiley Publication: March 1, 2013
Imprint: Wiley-ISTE Language: English
Author:
ISBN: 9781118623084
Publisher: Wiley
Publication: March 1, 2013
Imprint: Wiley-ISTE
Language: English

Nearly all solids are compised of grains. However most studies treat materials as a continious solid. The book applies analysis used on loose granular materials to dense grainular materials. This title’s main focus is devoted to static or dynamic loadings applied to dense materials, although rapid flows and widely dispersed media are also mentioned briefly. Three essential areas are covered: Local variable analysis: Contact forces, displacements and rotations, orientation of contacting particles and fabric tensors are all examples of local variables. Their statistical distributions, such as spatial distribution and possible localization, are analyzed, taking into account experimental results or numerical simulations. Change of scales procedures: Also known as “homogenization techniques”, these procedures make it possible to construct continuum laws to be used in a continuum mechanics approach or performing smaller scale analyses. Numerical modeling: Several methods designed to calculate approximate solutions of dynamical equations together with unilateral contact and frictional laws are presented, including molecular dynamics, the distinct element method and non-smooth contact dynamics. Numerical examples are given and the quality of numerical approximations is discussed.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Nearly all solids are compised of grains. However most studies treat materials as a continious solid. The book applies analysis used on loose granular materials to dense grainular materials. This title’s main focus is devoted to static or dynamic loadings applied to dense materials, although rapid flows and widely dispersed media are also mentioned briefly. Three essential areas are covered: Local variable analysis: Contact forces, displacements and rotations, orientation of contacting particles and fabric tensors are all examples of local variables. Their statistical distributions, such as spatial distribution and possible localization, are analyzed, taking into account experimental results or numerical simulations. Change of scales procedures: Also known as “homogenization techniques”, these procedures make it possible to construct continuum laws to be used in a continuum mechanics approach or performing smaller scale analyses. Numerical modeling: Several methods designed to calculate approximate solutions of dynamical equations together with unilateral contact and frictional laws are presented, including molecular dynamics, the distinct element method and non-smooth contact dynamics. Numerical examples are given and the quality of numerical approximations is discussed.

More books from Wiley

Cover of the book A Kick in the Attitude by
Cover of the book Microwave Noncontact Motion Sensing and Analysis by
Cover of the book Qualified Appraisals and Qualified Appraisers by
Cover of the book Statische Beurteilung historischer Tragwerke by
Cover of the book Public-Sector Project Management by
Cover of the book Lead & Influence by
Cover of the book Beyond Bourdieu by
Cover of the book Landscape Site Grading Principles by
Cover of the book Atomistic Computer Simulations by
Cover of the book Office 2019 For Seniors For Dummies by
Cover of the book Chess For Dummies by
Cover of the book Dreamweaver CS6 For Dummies by
Cover of the book At Zero by
Cover of the book Tips For A Successful Ebay Business by
Cover of the book Self-Organized Organic Semiconductors by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy