Microbial Degradation of Xenobiotics

Nonfiction, Science & Nature, Science, Earth Sciences, Geology, Biological Sciences, Environmental Science
Cover of the book Microbial Degradation of Xenobiotics by , Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783642237898
Publisher: Springer Berlin Heidelberg Publication: October 7, 2011
Imprint: Springer Language: English
Author:
ISBN: 9783642237898
Publisher: Springer Berlin Heidelberg
Publication: October 7, 2011
Imprint: Springer
Language: English

Our interest in the microbial biodegradation of xenobiotics has increased many folds in recent years to find out sustainable ways for environmental cleanup. Bioremediation and biotransformation processes harness the naturally occurring ability of microbes to degrade, transform or accumulate a wide range of organic pollutants. Major methodological breakthroughs in recent years through detailed genomic, metagenomic, proteomic, bioinformatic and other high-throughput analyses of environmentally relevant microorganisms have provided us unprecedented insights into key biodegradative pathways and the ability of organisms to adapt to changing environmental conditions. The degradation of a wide spectrum of organic pollutants and wastes discharged into the environment by anthropogenic activities is an emerging need today to promote sustainable development of our society with low environmental impact. Microbial processes play a major role in the removal of recalcitrant compounds taking advantage of the astonishing catabolic versatility of microorganisms to degrade or transform such compounds. New breakthroughs in sequencing, genomics, proteomics, bioinformatics and imaging are generating vital information which opens a new era providing new insights of metabolic and regulatory networks, as well as clues to the evolution of degradation pathways and to the molecular adaptation strategies to changing environmental conditions. Functional genomic and metagenomic approaches are increasing our understanding of the relative importance of different pathways and regulatory networks to carbon flux in particular environments and for particular compounds. New approaches will certainly accelerate the development of bioremediation technologies and biotransformation processes in coming years for natural attenuation of contaminated environments

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Our interest in the microbial biodegradation of xenobiotics has increased many folds in recent years to find out sustainable ways for environmental cleanup. Bioremediation and biotransformation processes harness the naturally occurring ability of microbes to degrade, transform or accumulate a wide range of organic pollutants. Major methodological breakthroughs in recent years through detailed genomic, metagenomic, proteomic, bioinformatic and other high-throughput analyses of environmentally relevant microorganisms have provided us unprecedented insights into key biodegradative pathways and the ability of organisms to adapt to changing environmental conditions. The degradation of a wide spectrum of organic pollutants and wastes discharged into the environment by anthropogenic activities is an emerging need today to promote sustainable development of our society with low environmental impact. Microbial processes play a major role in the removal of recalcitrant compounds taking advantage of the astonishing catabolic versatility of microorganisms to degrade or transform such compounds. New breakthroughs in sequencing, genomics, proteomics, bioinformatics and imaging are generating vital information which opens a new era providing new insights of metabolic and regulatory networks, as well as clues to the evolution of degradation pathways and to the molecular adaptation strategies to changing environmental conditions. Functional genomic and metagenomic approaches are increasing our understanding of the relative importance of different pathways and regulatory networks to carbon flux in particular environments and for particular compounds. New approaches will certainly accelerate the development of bioremediation technologies and biotransformation processes in coming years for natural attenuation of contaminated environments

More books from Springer Berlin Heidelberg

Cover of the book Managing Service Productivity by
Cover of the book Therapeutic Angiogenesis by
Cover of the book Polysaccharide Based Graft Copolymers by
Cover of the book Sustainable Asset Accumulation and Dynamic Portfolio Decisions by
Cover of the book Transport Development in Asian Megacities by
Cover of the book Treatment of Human Parasitosis in Traditional Chinese Medicine by
Cover of the book Structure-Property Relationships in Non-Linear Optical Crystals II by
Cover of the book Pkw-Klimatisierung by
Cover of the book Palliative Surgery by
Cover of the book Capture and Utilization of Carbon Dioxide with Polyethylene Glycol by
Cover of the book Challenge Social Innovation by
Cover of the book Flow and Combustion in Reciprocating Engines by
Cover of the book Die Maxwell´sche Theorie by
Cover of the book Pharmacotherapy of Pulmonary Hypertension by
Cover of the book Iterative Methods for Fixed Point Problems in Hilbert Spaces by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy