Micro and Nanophotonics for Semiconductor Infrared Detectors

Towards an Ultimate Uncooled Device

Nonfiction, Science & Nature, Technology, Microwaves, Material Science
Cover of the book Micro and Nanophotonics for Semiconductor Infrared Detectors by Zoran Jakšić, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Zoran Jakšić ISBN: 9783319096742
Publisher: Springer International Publishing Publication: September 25, 2014
Imprint: Springer Language: English
Author: Zoran Jakšić
ISBN: 9783319096742
Publisher: Springer International Publishing
Publication: September 25, 2014
Imprint: Springer
Language: English

The advent of microelectromechanic system (MEMS) technologies and nanotechnologies has resulted in a multitude of structures and devices with ultra compact dimensions and with vastly enhanced or even completely novel properties. In the field of photonics it resulted in the appearance of new paradigms, including photonic crystals that exhibit photonic bandgap and represent an optical analog of semiconductors and metamaterials that have subwavelength features and may have almost arbitrary values of effective refractive index, including those below zero. In addition to that, a whole new field of plasmonics appeared, dedicated to the manipulation with evanescent, surface-bound electromagnetic waves and offering an opportunity to merge nanoelectronics with all-optical circuitry. In the field of infrared technologies MEMS and nanotechnologies ensured the appearance of a new generation of silicon-based thermal detectors with properties vastly surpassing the conventional thermal devices. However, another family of infrared detectors, photonic devices based on narrow-bandgap semiconductors, has traditionally been superior to thermal detectors. Literature about their micro and nanophotonic enhancement has been scarce and scattered through journals. This book offers the first systematic approach to numerous different MEMS and nanotechnology-based methods available for the improvement of photonic infrared detectors and points out to a path towards uncooled operation with the performance of cryogenically cooled devices. It is shown that a vast area for enhancement does exists and that photonic devices can readily keep their leading position in infrared detection. The various methods and approaches described in the book are also directly applicable to different other types of photodetectors like solar cells, often with little or no modification.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The advent of microelectromechanic system (MEMS) technologies and nanotechnologies has resulted in a multitude of structures and devices with ultra compact dimensions and with vastly enhanced or even completely novel properties. In the field of photonics it resulted in the appearance of new paradigms, including photonic crystals that exhibit photonic bandgap and represent an optical analog of semiconductors and metamaterials that have subwavelength features and may have almost arbitrary values of effective refractive index, including those below zero. In addition to that, a whole new field of plasmonics appeared, dedicated to the manipulation with evanescent, surface-bound electromagnetic waves and offering an opportunity to merge nanoelectronics with all-optical circuitry. In the field of infrared technologies MEMS and nanotechnologies ensured the appearance of a new generation of silicon-based thermal detectors with properties vastly surpassing the conventional thermal devices. However, another family of infrared detectors, photonic devices based on narrow-bandgap semiconductors, has traditionally been superior to thermal detectors. Literature about their micro and nanophotonic enhancement has been scarce and scattered through journals. This book offers the first systematic approach to numerous different MEMS and nanotechnology-based methods available for the improvement of photonic infrared detectors and points out to a path towards uncooled operation with the performance of cryogenically cooled devices. It is shown that a vast area for enhancement does exists and that photonic devices can readily keep their leading position in infrared detection. The various methods and approaches described in the book are also directly applicable to different other types of photodetectors like solar cells, often with little or no modification.

More books from Springer International Publishing

Cover of the book Kantian Antitheodicy by Zoran Jakšić
Cover of the book Creativity and Technology in Mathematics Education by Zoran Jakšić
Cover of the book Drug Therapy and Interactions in Pediatric Oncology by Zoran Jakšić
Cover of the book Molecular Mechanisms of Cell Differentiation in Gonad Development by Zoran Jakšić
Cover of the book Sleep Disorders in Children by Zoran Jakšić
Cover of the book High-Energy Atomic Physics by Zoran Jakšić
Cover of the book Data Science and Big Data: An Environment of Computational Intelligence by Zoran Jakšić
Cover of the book Landscapes and Landforms of the Lesser Antilles by Zoran Jakšić
Cover of the book Plasticity and Fracture by Zoran Jakšić
Cover of the book Islamophobia in Britain by Zoran Jakšić
Cover of the book Functional Molecular Silicon Compounds I by Zoran Jakšić
Cover of the book Computer Safety, Reliability, and Security by Zoran Jakšić
Cover of the book Children's Rights and Social Work by Zoran Jakšić
Cover of the book Complex, Intelligent, and Software Intensive Systems by Zoran Jakšić
Cover of the book Future of CO2 Capture, Transport and Storage Projects by Zoran Jakšić
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy