Author: | Leonid Sosnovskiy, Sergei Sherbakov | ISBN: | 9783319249810 |
Publisher: | Springer International Publishing | Publication: | December 23, 2015 |
Imprint: | Springer | Language: | English |
Author: | Leonid Sosnovskiy, Sergei Sherbakov |
ISBN: | 9783319249810 |
Publisher: | Springer International Publishing |
Publication: | December 23, 2015 |
Imprint: | Springer |
Language: | English |
This monograph addresses the foundations of mechanothermodynamics and analyzes two of its key principles—damage of everything that exists has no conceivable limits, and effective energy (entropy) flows caused by loads of a different nature do not have a cumulative property; they interact dialectically. The authors examine a generalized model of energy and entropy states of a mechanothermodynamical medium, which generally is a continuum (liquid, gaseous) containing distributed solid deformable, and, therefore, damageable bodies, as a problem of information states of movable and damageable systems and express a solution in the first approximation. The book goes on to analyze some directions of further research in its conclusion. It is ideal for scientists, engineers, post graduate and master students of mechanics, mathematics and physics.
This monograph addresses the foundations of mechanothermodynamics and analyzes two of its key principles—damage of everything that exists has no conceivable limits, and effective energy (entropy) flows caused by loads of a different nature do not have a cumulative property; they interact dialectically. The authors examine a generalized model of energy and entropy states of a mechanothermodynamical medium, which generally is a continuum (liquid, gaseous) containing distributed solid deformable, and, therefore, damageable bodies, as a problem of information states of movable and damageable systems and express a solution in the first approximation. The book goes on to analyze some directions of further research in its conclusion. It is ideal for scientists, engineers, post graduate and master students of mechanics, mathematics and physics.