Matrix-Analytic Methods in Stochastic Models

Nonfiction, Science & Nature, Mathematics, Number Systems, Statistics
Cover of the book Matrix-Analytic Methods in Stochastic Models by , Springer New York
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781461449096
Publisher: Springer New York Publication: December 4, 2012
Imprint: Springer Language: English
Author:
ISBN: 9781461449096
Publisher: Springer New York
Publication: December 4, 2012
Imprint: Springer
Language: English

Matrix-analytic and related methods have become recognized as an important and fundamental approach for the mathematical analysis of general classes of complex stochastic models. Research in the area of matrix-analytic and related methods seeks to discover underlying probabilistic structures intrinsic in such stochastic models, develop numerical algorithms for computing functionals (e.g., performance measures) of the underlying stochastic processes, and apply these probabilistic structures and/or computational algorithms within a wide variety of fields. This volume presents recent research results on: the theory, algorithms and methodologies concerning matrix-analytic and related methods in stochastic models; and the application of matrix-analytic and related methods in various fields, which includes but is not limited to computer science and engineering, communication networks and telephony, electrical and industrial engineering, operations research, management science, financial and risk analysis, and bio-statistics. These research studies provide deep insights and understanding of the stochastic models of interest from a mathematics and/or applications perspective, as well as identify directions for future research.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Matrix-analytic and related methods have become recognized as an important and fundamental approach for the mathematical analysis of general classes of complex stochastic models. Research in the area of matrix-analytic and related methods seeks to discover underlying probabilistic structures intrinsic in such stochastic models, develop numerical algorithms for computing functionals (e.g., performance measures) of the underlying stochastic processes, and apply these probabilistic structures and/or computational algorithms within a wide variety of fields. This volume presents recent research results on: the theory, algorithms and methodologies concerning matrix-analytic and related methods in stochastic models; and the application of matrix-analytic and related methods in various fields, which includes but is not limited to computer science and engineering, communication networks and telephony, electrical and industrial engineering, operations research, management science, financial and risk analysis, and bio-statistics. These research studies provide deep insights and understanding of the stochastic models of interest from a mathematics and/or applications perspective, as well as identify directions for future research.

More books from Springer New York

Cover of the book Transport Moving to Climate Intelligence by
Cover of the book Sexual Medicine in Clinical Practice by
Cover of the book Theory of Stochastic Processes by
Cover of the book Emerging Themes in Cognitive Development by
Cover of the book Enclosed Experimental Ecosystems and Scale by
Cover of the book The Pediatric Spine I by
Cover of the book Resilience in Deaf Children by
Cover of the book Fundamentals of Space Business and Economics by
Cover of the book Immunoassays in Coagulation Testing by
Cover of the book Systems Analysis of Chromatin-Related Protein Complexes in Cancer by
Cover of the book Cancer Targeted Drug Delivery by
Cover of the book Atlas of Conducted Electrical Weapon Wounds and Forensic Analysis by
Cover of the book Large-Scale Data Analytics by
Cover of the book Wildlife Behavior and Conservation by
Cover of the book Ultra-Wideband, Short Pulse Electromagnetics 9 by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy