Mathematical Elasticity

Volume II: Theory of Plates

Nonfiction, Science & Nature, Mathematics, Geometry, Algebra
Cover of the book Mathematical Elasticity by Philippe G. Ciarlet, Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Philippe G. Ciarlet ISBN: 9780080535913
Publisher: Elsevier Science Publication: July 22, 1997
Imprint: North Holland Language: English
Author: Philippe G. Ciarlet
ISBN: 9780080535913
Publisher: Elsevier Science
Publication: July 22, 1997
Imprint: North Holland
Language: English

The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any a priori assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in H1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established.

In the nonlinear case, again after ad hoc scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von Kármán equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The objective of Volume II is to show how asymptotic methods, with the thickness as the small parameter, indeed provide a powerful means of justifying two-dimensional plate theories. More specifically, without any recourse to any a priori assumptions of a geometrical or mechanical nature, it is shown that in the linear case, the three-dimensional displacements, once properly scaled, converge in H1 towards a limit that satisfies the well-known two-dimensional equations of the linear Kirchhoff-Love theory; the convergence of stress is also established.

In the nonlinear case, again after ad hoc scalings have been performed, it is shown that the leading term of a formal asymptotic expansion of the three-dimensional solution satisfies well-known two-dimensional equations, such as those of the nonlinear Kirchhoff-Love theory, or the von Kármán equations. Special attention is also given to the first convergence result obtained in this case, which leads to two-dimensional large deformation, frame-indifferent, nonlinear membrane theories. It is also demonstrated that asymptotic methods can likewise be used for justifying other lower-dimensional equations of elastic shallow shells, and the coupled pluri-dimensional equations of elastic multi-structures, i.e., structures with junctions. In each case, the existence, uniqueness or multiplicity, and regularity of solutions to the limit equations obtained in this fashion are also studied.

More books from Elsevier Science

Cover of the book Natural Fiber Reinforced Vinyl Ester and Vinyl Polymer Composites by Philippe G. Ciarlet
Cover of the book Identification of Neural Markers Accompanying Memory by Philippe G. Ciarlet
Cover of the book Liquid Chromatography by Philippe G. Ciarlet
Cover of the book Mechanisms and Models in Rheumatoid Arthritis by Philippe G. Ciarlet
Cover of the book Mobile Malware Attacks and Defense by Philippe G. Ciarlet
Cover of the book Handbook of Labor Economics by Philippe G. Ciarlet
Cover of the book Analytical Methods for Food Additives by Philippe G. Ciarlet
Cover of the book Computational Plasticity in Powder Forming Processes by Philippe G. Ciarlet
Cover of the book Genetic Diagnosis of Endocrine Disorders by Philippe G. Ciarlet
Cover of the book Bioceramics Volume 10 by Philippe G. Ciarlet
Cover of the book Pharmacology and Therapeutics of Constitutively Active Receptors by Philippe G. Ciarlet
Cover of the book Intelligent Coatings for Corrosion Control by Philippe G. Ciarlet
Cover of the book Practical Reservoir Engineering and Characterization by Philippe G. Ciarlet
Cover of the book Advances in the Study of Behavior by Philippe G. Ciarlet
Cover of the book Social Network Analytics by Philippe G. Ciarlet
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy