Materials & Process Integration for MEMS

Nonfiction, Science & Nature, Technology, Material Science, Science, Physics, Mechanics
Cover of the book Materials & Process Integration for MEMS by , Springer US
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9781475757910
Publisher: Springer US Publication: June 29, 2013
Imprint: Springer Language: English
Author:
ISBN: 9781475757910
Publisher: Springer US
Publication: June 29, 2013
Imprint: Springer
Language: English

The field of materials and process integration for MEMS research has an extensive past as well as a long and promising future. Researchers, academicians and engineers from around the world are increasingly devoting their efforts on the materials and process integration issues and opportunities in MEMS devices. These efforts are crucial to sustain the long-term growth of the MEMS field. The commercial MEMS community is heavily driven by the push for profitable and sustainable products. In the course of establishing high­ volume and low-cost production processes, the critical importance of materials properties, behaviors, reliability, reproducibility, and predictability, as well as process integration of compatible materials systems become apparent. Although standard IC fabrication steps, particularly lithographic techniques, are leveraged heavily in the creation of MEMS devices, additional customized and novel micromachining techniques are needed to develop sophisticated MEMS structures. One of the most common techniques is bulk micromachining, by which micromechanical structures are created by etching into the bulk of the substrates with either anisotropic etching with strong alk:ali solution or deep reactive-ion etching (DRIB). The second common technique is surface micromachining, by which planar microstructures are created by sequential deposition and etching of thin films on the surface of the substrate, followed by a fmal removal of sacrificial layers to release suspended structures. Other techniques include deep lithography and plating to create metal structures with high aspect ratios (LIGA), micro electrodischarge machining (J.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The field of materials and process integration for MEMS research has an extensive past as well as a long and promising future. Researchers, academicians and engineers from around the world are increasingly devoting their efforts on the materials and process integration issues and opportunities in MEMS devices. These efforts are crucial to sustain the long-term growth of the MEMS field. The commercial MEMS community is heavily driven by the push for profitable and sustainable products. In the course of establishing high­ volume and low-cost production processes, the critical importance of materials properties, behaviors, reliability, reproducibility, and predictability, as well as process integration of compatible materials systems become apparent. Although standard IC fabrication steps, particularly lithographic techniques, are leveraged heavily in the creation of MEMS devices, additional customized and novel micromachining techniques are needed to develop sophisticated MEMS structures. One of the most common techniques is bulk micromachining, by which micromechanical structures are created by etching into the bulk of the substrates with either anisotropic etching with strong alk:ali solution or deep reactive-ion etching (DRIB). The second common technique is surface micromachining, by which planar microstructures are created by sequential deposition and etching of thin films on the surface of the substrate, followed by a fmal removal of sacrificial layers to release suspended structures. Other techniques include deep lithography and plating to create metal structures with high aspect ratios (LIGA), micro electrodischarge machining (J.

More books from Springer US

Cover of the book Practitioner’s Guide to Behavioral Problems in Children by
Cover of the book The Psychology of Sympathy by
Cover of the book Discriminative Stimulus Properties of Drugs by
Cover of the book Nitric Oxide and Infection by
Cover of the book 3D Imaging Technologies in Atherosclerosis by
Cover of the book Dermatopathology: The Basics by
Cover of the book The Economic and Social Dynamics of Biotechnology by
Cover of the book Child and Adult Development by
Cover of the book Biomedical Materials by
Cover of the book Lipodystrophy Syndrome in HIV by
Cover of the book Integrity, Internal Control and Security in Information Systems by
Cover of the book Molecular Aspects of Early Development by
Cover of the book Numerical Methods for Experimental Mechanics by
Cover of the book Enzyme-Prodrug Strategies for Cancer Therapy by
Cover of the book Assembly with Robots by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy