Mastering Apache Spark 2.x - Second Edition

Nonfiction, Computers, Advanced Computing, Programming, Data Modeling & Design, Database Management, Data Processing, Internet, Web Development, Java
Cover of the book Mastering Apache Spark 2.x - Second Edition by Romeo Kienzler, Packt Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Romeo Kienzler ISBN: 9781785285226
Publisher: Packt Publishing Publication: July 26, 2017
Imprint: Packt Publishing Language: English
Author: Romeo Kienzler
ISBN: 9781785285226
Publisher: Packt Publishing
Publication: July 26, 2017
Imprint: Packt Publishing
Language: English

Advanced analytics on your Big Data with latest Apache Spark 2.x

About This Book

  • An advanced guide with a combination of instructions and practical examples to extend the most up-to date Spark functionalities.
  • Extend your data processing capabilities to process huge chunk of data in minimum time using advanced concepts in Spark.
  • Master the art of real-time processing with the help of Apache Spark 2.x

Who This Book Is For

If you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected.

What You Will Learn

  • Examine Advanced Machine Learning and DeepLearning with MLlib, SparkML, SystemML, H2O and DeepLearning4J
  • Study highly optimised unified batch and real-time data processing using SparkSQL and Structured Streaming
  • Evaluate large-scale Graph Processing and Analysis using GraphX and GraphFrames
  • Apply Apache Spark in Elastic deployments using Jupyter and Zeppelin Notebooks, Docker, Kubernetes and the IBM Cloud
  • Understand internal details of cost based optimizers used in Catalyst, SystemML and GraphFrames
  • Learn how specific parameter settings affect overall performance of an Apache Spark cluster
  • Leverage Scala, R and python for your data science projects

In Detail

Apache Spark is an in-memory cluster-based parallel processing system that provides a wide range of functionalities such as graph processing, machine learning, stream processing, and SQL. This book aims to take your knowledge of Spark to the next level by teaching you how to expand Spark's functionality and implement your data flows and machine/deep learning programs on top of the platform.

The book commences with an overview of the Spark ecosystem. It will introduce you to Project Tungsten and Catalyst, two of the major advancements of Apache Spark 2.x.

You will understand how memory management and binary processing, cache-aware computation, and code generation are used to speed things up dramatically. The book extends to show how to incorporate H20, SystemML, and Deeplearning4j for machine learning, and Jupyter Notebooks and Kubernetes/Docker for cloud-based Spark. During the course of the book, you will learn about the latest enhancements to Apache Spark 2.x, such as interactive querying of live data and unifying DataFrames and Datasets.

You will also learn about the updates on the APIs and how DataFrames and Datasets affect SQL, machine learning, graph processing, and streaming. You will learn to use Spark as a big data operating system, understand how to implement advanced analytics on the new APIs, and explore how easy it is to use Spark in day-to-day tasks.

Style and approach

This book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Advanced analytics on your Big Data with latest Apache Spark 2.x

About This Book

Who This Book Is For

If you are a developer with some experience with Spark and want to strengthen your knowledge of how to get around in the world of Spark, then this book is ideal for you. Basic knowledge of Linux, Hadoop and Spark is assumed. Reasonable knowledge of Scala is expected.

What You Will Learn

In Detail

Apache Spark is an in-memory cluster-based parallel processing system that provides a wide range of functionalities such as graph processing, machine learning, stream processing, and SQL. This book aims to take your knowledge of Spark to the next level by teaching you how to expand Spark's functionality and implement your data flows and machine/deep learning programs on top of the platform.

The book commences with an overview of the Spark ecosystem. It will introduce you to Project Tungsten and Catalyst, two of the major advancements of Apache Spark 2.x.

You will understand how memory management and binary processing, cache-aware computation, and code generation are used to speed things up dramatically. The book extends to show how to incorporate H20, SystemML, and Deeplearning4j for machine learning, and Jupyter Notebooks and Kubernetes/Docker for cloud-based Spark. During the course of the book, you will learn about the latest enhancements to Apache Spark 2.x, such as interactive querying of live data and unifying DataFrames and Datasets.

You will also learn about the updates on the APIs and how DataFrames and Datasets affect SQL, machine learning, graph processing, and streaming. You will learn to use Spark as a big data operating system, understand how to implement advanced analytics on the new APIs, and explore how easy it is to use Spark in day-to-day tasks.

Style and approach

This book is an extensive guide to Apache Spark modules and tools and shows how Spark's functionality can be extended for real-time processing and storage with worked examples.

More books from Packt Publishing

Cover of the book Robotium Automated Testing for Android by Romeo Kienzler
Cover of the book Mastering AngularJS Directives by Romeo Kienzler
Cover of the book Scaling Big Data with Hadoop and Solr by Romeo Kienzler
Cover of the book Python High Performance Programming by Romeo Kienzler
Cover of the book ASP.NET jQuery Cookbook by Romeo Kienzler
Cover of the book Learning Web Development with React and Bootstrap by Romeo Kienzler
Cover of the book Hands-On Cloud-Native Microservices with Jakarta EE by Romeo Kienzler
Cover of the book Modular Programming with Python by Romeo Kienzler
Cover of the book MVVM Survival Guide for Enterprise Architectures in Silverlight and WPF by Romeo Kienzler
Cover of the book Oracle SOA Suite 12c Administrator's Guide by Romeo Kienzler
Cover of the book PrimeFaces Blueprints by Romeo Kienzler
Cover of the book Spring Batch Essentials by Romeo Kienzler
Cover of the book Xcode 6 Essentials by Romeo Kienzler
Cover of the book TypeScript 3.0 Quick Start Guide by Romeo Kienzler
Cover of the book StartupPro: How to set up and grow a tech business by Romeo Kienzler
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy