Marktrisiken

Portfoliotheorie und Risikomaße

Business & Finance, Industries & Professions, Insurance, Nonfiction, Science & Nature, Mathematics, Applied
Cover of the book Marktrisiken by Jürgen Kremer, Springer Berlin Heidelberg
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Jürgen Kremer ISBN: 9783662560198
Publisher: Springer Berlin Heidelberg Publication: March 9, 2018
Imprint: Springer Gabler Language: German
Author: Jürgen Kremer
ISBN: 9783662560198
Publisher: Springer Berlin Heidelberg
Publication: March 9, 2018
Imprint: Springer Gabler
Language: German

In diesem Buch werden Konzepte zur Quantifizierung von Marktrisiken dargestellt. Im Rahmen der im ersten Kapitel vorgestellten Portfoliotheorie werden Kapitalanlagen charakterisiert, die nach Vorgabe eines Risikos eine möglichst hohe erwartete Rendite versprechen. Risiko wird hier definiert als die Standardabweichung der Portfoliorendite.

Für arbitragefreie Ein-Perioden-Modelle lassen sich optimale Portfolios auch mithilfe von Wahrscheinlichkeitsdichten explizit angeben, und die Martingalmaße vollständiger arbitragefreier Marktmodelle lassen sich umgekehrt mithilfe des Marktportfolios und der Kovarianzmatrix der klassischen Portfoliotheorie darstellen, was im zweiten Kapitel ausgeführt wird.

Im dritten Kapitel wird das wichtige Risikomaß Value at Risk vorgestellt, das den größten Verlust eines Portfolios quantifiziert, der mit einer vorgegebenen Wahrscheinlichkeit in einem vorgegebenen Zeitraum nicht überschritten wird. Neben der Delta-Normal-Methode zur näherungsweisen Berechnung des Value at Risk werden auch auf dieser Methode basierende Zerlegungen des Gesamtrisikos in Teilrisiken und Sensitivitäten des Value at Risk gegenüber Änderungen der Risikofaktoren behandelt.

Der Value at Risk macht keine Aussagen über die Verteilung der hohen Verluste und er ist nicht subadditiv. Die Formulierung von Eigenschaften, die ein gutes Risikomaß haben sollte, führt zum Konzept der kohärenten Risikomaße, die im vierten Kapitel zusammen mit ihrem wichtigsten Vertreter, dem Expected Shortfall, vorgestellt werden. Der Expected Shortfall wird als kohärent nachgewiesen, und seine Berechnung wird für normalverteilte und lognormalverteilte Auszahlungen explizit angegeben.

Jedes Kapitel endet mit einer Reihe von Aufgaben, für die sich im letzten Kapitel vollständige Lösungen finden.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

In diesem Buch werden Konzepte zur Quantifizierung von Marktrisiken dargestellt. Im Rahmen der im ersten Kapitel vorgestellten Portfoliotheorie werden Kapitalanlagen charakterisiert, die nach Vorgabe eines Risikos eine möglichst hohe erwartete Rendite versprechen. Risiko wird hier definiert als die Standardabweichung der Portfoliorendite.

Für arbitragefreie Ein-Perioden-Modelle lassen sich optimale Portfolios auch mithilfe von Wahrscheinlichkeitsdichten explizit angeben, und die Martingalmaße vollständiger arbitragefreier Marktmodelle lassen sich umgekehrt mithilfe des Marktportfolios und der Kovarianzmatrix der klassischen Portfoliotheorie darstellen, was im zweiten Kapitel ausgeführt wird.

Im dritten Kapitel wird das wichtige Risikomaß Value at Risk vorgestellt, das den größten Verlust eines Portfolios quantifiziert, der mit einer vorgegebenen Wahrscheinlichkeit in einem vorgegebenen Zeitraum nicht überschritten wird. Neben der Delta-Normal-Methode zur näherungsweisen Berechnung des Value at Risk werden auch auf dieser Methode basierende Zerlegungen des Gesamtrisikos in Teilrisiken und Sensitivitäten des Value at Risk gegenüber Änderungen der Risikofaktoren behandelt.

Der Value at Risk macht keine Aussagen über die Verteilung der hohen Verluste und er ist nicht subadditiv. Die Formulierung von Eigenschaften, die ein gutes Risikomaß haben sollte, führt zum Konzept der kohärenten Risikomaße, die im vierten Kapitel zusammen mit ihrem wichtigsten Vertreter, dem Expected Shortfall, vorgestellt werden. Der Expected Shortfall wird als kohärent nachgewiesen, und seine Berechnung wird für normalverteilte und lognormalverteilte Auszahlungen explizit angegeben.

Jedes Kapitel endet mit einer Reihe von Aufgaben, für die sich im letzten Kapitel vollständige Lösungen finden.

More books from Springer Berlin Heidelberg

Cover of the book So einfach ist Mathematik - Zwölf Herausforderungen im ersten Semester by Jürgen Kremer
Cover of the book Craniofacial Trauma by Jürgen Kremer
Cover of the book Sexueller Missbrauch von Kindern und Jugendlichen by Jürgen Kremer
Cover of the book X-Ray Absorption Spectroscopy of Semiconductors by Jürgen Kremer
Cover of the book The Artificial Disc by Jürgen Kremer
Cover of the book Grundfragen der Medienwirtschaft by Jürgen Kremer
Cover of the book Astrobiology, History, and Society by Jürgen Kremer
Cover of the book International Law and Humanitarian Assistance by Jürgen Kremer
Cover of the book Phosphorous Heterocycles I by Jürgen Kremer
Cover of the book Hot Cracking Phenomena in Welds III by Jürgen Kremer
Cover of the book JIMD Reports, Volume 37 by Jürgen Kremer
Cover of the book Media Management by Jürgen Kremer
Cover of the book Knowledge Engineering and Management by Jürgen Kremer
Cover of the book FBL Klein-Vogelbach Functional Kinetics Behandlungstechniken by Jürgen Kremer
Cover of the book The Aral Sea Basin by Jürgen Kremer
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy