Linear Discrete Parabolic Problems

Nonfiction, Science & Nature, Mathematics, Discrete Mathematics, Mathematical Analysis
Cover of the book Linear Discrete Parabolic Problems by Nikolai Bakaev, Elsevier Science
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Nikolai Bakaev ISBN: 9780080462080
Publisher: Elsevier Science Publication: December 2, 2005
Imprint: North Holland Language: English
Author: Nikolai Bakaev
ISBN: 9780080462080
Publisher: Elsevier Science
Publication: December 2, 2005
Imprint: North Holland
Language: English

This volume introduces a unified, self-contained study of linear discrete parabolic problems through reducing the starting discrete problem to the Cauchy problem for an evolution equation in discrete time. Accessible to beginning graduate students, the book contains a general stability theory of discrete evolution equations in Banach space and gives applications of this theory to the analysis of various classes of modern discretization methods, among others, Runge-Kutta and linear multistep methods as well as operator splitting methods.

Key features:

* Presents a unified approach to examining discretization methods for parabolic equations.
* Highlights a stability theory of discrete evolution equations (discrete semigroups) in Banach space.
* Deals with both autonomous and non-autonomous equations as well as with equations with memory.
* Offers a series of numerous well-posedness and convergence results for various discretization methods as applied to abstract parabolic equations; among others, Runge-Kutta and linear multistep methods as well as certain operator splitting methods.
* Provides comments of results and historical remarks after each chapter.

· Presents a unified approach to examining discretization methods for parabolic equations.
· Highlights a stability theory of discrete evolution equations (discrete semigroups) in Banach space.
· Deals with both autonomous and non-autonomous equations as well as with equations with memory.
· Offers a series of numerous well-posedness and convergence results for various discretization methods as applied to abstract parabolic equations; among others, Runge-Kutta and linear multistep methods as well as certain operator splitting methods as well as certain operator splitting methods are studied in detail.
·Provides comments of results and historical remarks after each chapter.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This volume introduces a unified, self-contained study of linear discrete parabolic problems through reducing the starting discrete problem to the Cauchy problem for an evolution equation in discrete time. Accessible to beginning graduate students, the book contains a general stability theory of discrete evolution equations in Banach space and gives applications of this theory to the analysis of various classes of modern discretization methods, among others, Runge-Kutta and linear multistep methods as well as operator splitting methods.

Key features:

* Presents a unified approach to examining discretization methods for parabolic equations.
* Highlights a stability theory of discrete evolution equations (discrete semigroups) in Banach space.
* Deals with both autonomous and non-autonomous equations as well as with equations with memory.
* Offers a series of numerous well-posedness and convergence results for various discretization methods as applied to abstract parabolic equations; among others, Runge-Kutta and linear multistep methods as well as certain operator splitting methods.
* Provides comments of results and historical remarks after each chapter.

· Presents a unified approach to examining discretization methods for parabolic equations.
· Highlights a stability theory of discrete evolution equations (discrete semigroups) in Banach space.
· Deals with both autonomous and non-autonomous equations as well as with equations with memory.
· Offers a series of numerous well-posedness and convergence results for various discretization methods as applied to abstract parabolic equations; among others, Runge-Kutta and linear multistep methods as well as certain operator splitting methods as well as certain operator splitting methods are studied in detail.
·Provides comments of results and historical remarks after each chapter.

More books from Elsevier Science

Cover of the book Cenozoic Foraminifera and Calcareous Nannofossil Biostratigraphy of the Niger Delta by Nikolai Bakaev
Cover of the book Op Amps for Everyone by Nikolai Bakaev
Cover of the book Textile Fibre Composites in Civil Engineering by Nikolai Bakaev
Cover of the book Cytokinesis by Nikolai Bakaev
Cover of the book Experiencing Climate Change in Bangladesh by Nikolai Bakaev
Cover of the book Advances in Experimental Social Psychology by Nikolai Bakaev
Cover of the book Seven Deadliest Wireless Technologies Attacks by Nikolai Bakaev
Cover of the book Computational Methods for the Atmosphere and the Oceans by Nikolai Bakaev
Cover of the book Internal Combustion Engines by Nikolai Bakaev
Cover of the book Civil Engineering Materials by Nikolai Bakaev
Cover of the book International Review of Research in Mental Retardation by Nikolai Bakaev
Cover of the book Fundamentals of Quorum Sensing, Analytical Methods and Applications in Membrane Bioreactors by Nikolai Bakaev
Cover of the book Molecular-Genetic and Statistical Techniques for Behavioral and Neural Research by Nikolai Bakaev
Cover of the book Proteomics in Biology, Part A by Nikolai Bakaev
Cover of the book Foundations of Genetic Algorithms 2001 (FOGA 6) by Nikolai Bakaev
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy