Limits, Limits Everywhere

The Tools of Mathematical Analysis

Nonfiction, Science & Nature, Mathematics, Mathematical Analysis, Calculus
Cover of the book Limits, Limits Everywhere by David Applebaum, OUP Oxford
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: David Applebaum ISBN: 9780191627873
Publisher: OUP Oxford Publication: March 1, 2012
Imprint: OUP Oxford Language: English
Author: David Applebaum
ISBN: 9780191627873
Publisher: OUP Oxford
Publication: March 1, 2012
Imprint: OUP Oxford
Language: English

A quantity can be made smaller and smaller without it ever vanishing. This fact has profound consequences for science, technology, and even the way we think about numbers. In this book, we will explore this idea by moving at an easy pace through an account of elementary real analysis and, in particular, will focus on numbers, sequences, and series. Almost all textbooks on introductory analysis assume some background in calculus. This book doesn't and, instead, the emphasis is on the application of analysis to number theory. The book is split into two parts. Part 1 follows a standard university course on analysis and each chapter closes with a set of exercises. Here, numbers, inequalities, convergence of sequences, and infinite series are all covered. Part 2 contains a selection of more unusual topics that aren't usually found in books of this type. It includes proofs of the irrationality of e and π, continued fractions, an introduction to the Riemann zeta function, Cantor's theory of the infinite, and Dedekind cuts. There is also a survey of what analysis can do for the calculus and a brief history of the subject. A lot of material found in a standard university course on "real analysis" is covered and most of the mathematics is written in standard theorem-proof style. However, more details are given than is usually the case to help readers who find this style daunting. Both set theory and proof by induction are avoided in the interests of making the book accessible to a wider readership, but both of these topics are the subjects of appendices for those who are interested in them. And unlike most university texts at this level, topics that have featured in popular science books, such as the Riemann hypothesis, are introduced here. As a result, this book occupies a unique position between a popular mathematics book and a first year college or university text, and offers a relaxed introduction to a fascinating and important branch of mathematics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

A quantity can be made smaller and smaller without it ever vanishing. This fact has profound consequences for science, technology, and even the way we think about numbers. In this book, we will explore this idea by moving at an easy pace through an account of elementary real analysis and, in particular, will focus on numbers, sequences, and series. Almost all textbooks on introductory analysis assume some background in calculus. This book doesn't and, instead, the emphasis is on the application of analysis to number theory. The book is split into two parts. Part 1 follows a standard university course on analysis and each chapter closes with a set of exercises. Here, numbers, inequalities, convergence of sequences, and infinite series are all covered. Part 2 contains a selection of more unusual topics that aren't usually found in books of this type. It includes proofs of the irrationality of e and π, continued fractions, an introduction to the Riemann zeta function, Cantor's theory of the infinite, and Dedekind cuts. There is also a survey of what analysis can do for the calculus and a brief history of the subject. A lot of material found in a standard university course on "real analysis" is covered and most of the mathematics is written in standard theorem-proof style. However, more details are given than is usually the case to help readers who find this style daunting. Both set theory and proof by induction are avoided in the interests of making the book accessible to a wider readership, but both of these topics are the subjects of appendices for those who are interested in them. And unlike most university texts at this level, topics that have featured in popular science books, such as the Riemann hypothesis, are introduced here. As a result, this book occupies a unique position between a popular mathematics book and a first year college or university text, and offers a relaxed introduction to a fascinating and important branch of mathematics.

More books from OUP Oxford

Cover of the book Tragedy: A Very Short Introduction by David Applebaum
Cover of the book The Economics and Politics of Climate Change by David Applebaum
Cover of the book Islam and the European Empires by David Applebaum
Cover of the book The Oxford Handbook of Theology and Modern European Thought by David Applebaum
Cover of the book The Oxford Handbook of Governance by David Applebaum
Cover of the book Managed by the Markets by David Applebaum
Cover of the book Antisemitism: A Very Short Introduction by David Applebaum
Cover of the book Sleep problems in Children and Adolescents by David Applebaum
Cover of the book Oxford Handbook of Pre-Hospital Care by David Applebaum
Cover of the book The Oxford Companion to Wine by David Applebaum
Cover of the book The Waning of Materialism by David Applebaum
Cover of the book Diploma Democracy by David Applebaum
Cover of the book A Companion to the Classification of Mental Disorders by David Applebaum
Cover of the book Jacob Wackernagel, Lectures on Syntax by David Applebaum
Cover of the book Rastafari: A Very Short Introduction by David Applebaum
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy