Lecture Notes on Knot Invariants

Nonfiction, Science & Nature, Mathematics, Topology, Geometry
Cover of the book Lecture Notes on Knot Invariants by Weiping Li, World Scientific Publishing Company
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Weiping Li ISBN: 9789814675987
Publisher: World Scientific Publishing Company Publication: August 21, 2015
Imprint: WSPC Language: English
Author: Weiping Li
ISBN: 9789814675987
Publisher: World Scientific Publishing Company
Publication: August 21, 2015
Imprint: WSPC
Language: English

The volume is focused on the basic calculation skills of various knot invariants defined from topology and geometry. It presents the detailed Hecke algebra and braid representation to illustrate the original Jones polynomial (rather than the algebraic formal definition many other books and research articles use) and provides self-contained proofs of the Tait conjecture (one of the big achievements from the Jones invariant). It also presents explicit computations to the Casson–Lin invariant via braid representations.

With the approach of an explicit computational point of view on knot invariants, this user-friendly volume will benefit readers to easily understand low-dimensional topology from examples and computations, rather than only knowing terminologies and theorems.

Contents:

  • Basic Knots, Links and Their Equivalences
  • Braids and Links
  • Knot and Link Invariants
  • Jones Polynomials
  • Casson Type Invariants

Readership: Undergraduate and graduate students interested in learning topology and low dimensional topology.
Key Features:

  • Applies a computational approach to understand knot invariants with geometric meanings
  • Provides a complete proof of Tait's conjectures from an original Jones polynomial definition
  • Gives recent new knot invariants from the approach of algebraic geometry (characteristic variety)
  • Readers will get a hands-on approach to the topological concepts and various invariant, instead of just knowing more fancy words
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The volume is focused on the basic calculation skills of various knot invariants defined from topology and geometry. It presents the detailed Hecke algebra and braid representation to illustrate the original Jones polynomial (rather than the algebraic formal definition many other books and research articles use) and provides self-contained proofs of the Tait conjecture (one of the big achievements from the Jones invariant). It also presents explicit computations to the Casson–Lin invariant via braid representations.

With the approach of an explicit computational point of view on knot invariants, this user-friendly volume will benefit readers to easily understand low-dimensional topology from examples and computations, rather than only knowing terminologies and theorems.

Contents:

Readership: Undergraduate and graduate students interested in learning topology and low dimensional topology.
Key Features:

More books from World Scientific Publishing Company

Cover of the book Advanced Calculus by Weiping Li
Cover of the book Nuclear Structure in China 2014 by Weiping Li
Cover of the book The Wellbeing of Singaporeans by Weiping Li
Cover of the book Goodness not Grief by Weiping Li
Cover of the book Diamondoid Molecules by Weiping Li
Cover of the book Opening Up China's Markets of Crude Oil and Petroleum Products by Weiping Li
Cover of the book Theory of Groups and Symmetries by Weiping Li
Cover of the book Art of Modern Oriental Management by Weiping Li
Cover of the book Quantum Bio-Informatics V by Weiping Li
Cover of the book Human Security Studies by Weiping Li
Cover of the book statsNotes by Weiping Li
Cover of the book Kernel Smoothing in Matlab by Weiping Li
Cover of the book The China Renaissance by Weiping Li
Cover of the book The Geometry of Quantum Potential by Weiping Li
Cover of the book A Voice for Science in the South by Weiping Li
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy