Author: | ISBN: | 9781118562925 | |
Publisher: | Wiley | Publication: | March 4, 2013 |
Imprint: | Wiley-ISTE | Language: | English |
Author: | |
ISBN: | 9781118562925 |
Publisher: | Wiley |
Publication: | March 4, 2013 |
Imprint: | Wiley-ISTE |
Language: | English |
Generally a laser (light amplification by stimulated emission of radiation) is defined as “a device which uses a quantum mechanical effect, stimulated emission, to generate a coherent beam of light from a lasing medium of controlled purity, size, and shape”. Laser material processing represents a great number of methods, which are rapidly growing in current and different industrial applications as new alternatives to traditional manufacturing processes. Nowadays, the use of lasers in manufacturing is an emerging area with a wide variety of applications, for example, in electronics, molds and dies, and biomedical applications.
The purpose of this book is to present a collection of examples illustrating the state of the art and research developments to lasers in manufacturing, covering laser rapid manufacturing, lasers in metal forming applications, laser forming of metal foams, mathematical modeling of laser drilling, thermal stress analysis, modeling and simulation of laser welding, and the use of lasers in surface engineering.
This book can be used as a research book for a final undergraduate engineering course or as a subject on lasers in manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, laser researchers, mechanical, manufacturing, materials or physics engineers, or professionals in any related modern manufacturing technology.
Contents
Generally a laser (light amplification by stimulated emission of radiation) is defined as “a device which uses a quantum mechanical effect, stimulated emission, to generate a coherent beam of light from a lasing medium of controlled purity, size, and shape”. Laser material processing represents a great number of methods, which are rapidly growing in current and different industrial applications as new alternatives to traditional manufacturing processes. Nowadays, the use of lasers in manufacturing is an emerging area with a wide variety of applications, for example, in electronics, molds and dies, and biomedical applications.
The purpose of this book is to present a collection of examples illustrating the state of the art and research developments to lasers in manufacturing, covering laser rapid manufacturing, lasers in metal forming applications, laser forming of metal foams, mathematical modeling of laser drilling, thermal stress analysis, modeling and simulation of laser welding, and the use of lasers in surface engineering.
This book can be used as a research book for a final undergraduate engineering course or as a subject on lasers in manufacturing at the postgraduate level. Also, this book can serve as a useful reference for academics, laser researchers, mechanical, manufacturing, materials or physics engineers, or professionals in any related modern manufacturing technology.
Contents