Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields

Nonfiction, Science & Nature, Mathematics, Number Theory
Cover of the book Jacobi Forms, Finite Quadratic Modules and Weil Representations over Number Fields by Hatice Boylan, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Hatice Boylan ISBN: 9783319129167
Publisher: Springer International Publishing Publication: December 5, 2014
Imprint: Springer Language: English
Author: Hatice Boylan
ISBN: 9783319129167
Publisher: Springer International Publishing
Publication: December 5, 2014
Imprint: Springer
Language: English

The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The new theory of Jacobi forms over totally real number fields introduced in this monograph is expected to give further insight into the arithmetic theory of Hilbert modular forms, its L-series, and into elliptic curves over number fields. This work is inspired by the classical theory of Jacobi forms over the rational numbers, which is an indispensable tool in the arithmetic theory of elliptic modular forms, elliptic curves, and in many other disciplines in mathematics and physics. Jacobi forms can be viewed as vector valued modular forms which take values in so-called Weil representations. Accordingly, the first two chapters develop the theory of finite quadratic modules and associated Weil representations over number fields. This part might also be interesting for those who are merely interested in the representation theory of Hilbert modular groups. One of the main applications is the complete classification of Jacobi forms of singular weight over an arbitrary totally real number field.

More books from Springer International Publishing

Cover of the book Natural Resources and Control Processes by Hatice Boylan
Cover of the book Dams, Displacement and Development by Hatice Boylan
Cover of the book Deep Learning and Convolutional Neural Networks for Medical Image Computing by Hatice Boylan
Cover of the book Building Trust in Information by Hatice Boylan
Cover of the book The Evaluators’ Eye by Hatice Boylan
Cover of the book Reconsidering Peace and Patriotism during the First World War by Hatice Boylan
Cover of the book 3D Printing and Bio-Based Materials in Global Health by Hatice Boylan
Cover of the book Disordered Vertebral and Rib Morphology in Pudgy Mice by Hatice Boylan
Cover of the book The Impact of Artists on Contemporary Urban Development in Europe by Hatice Boylan
Cover of the book Emerging Trends in Electrical, Electronic and Communications Engineering by Hatice Boylan
Cover of the book Raymond Smullyan on Self Reference by Hatice Boylan
Cover of the book Estimation and Testing Under Sparsity by Hatice Boylan
Cover of the book Advanced Decision Making for HVAC Engineers by Hatice Boylan
Cover of the book Foot Patrol by Hatice Boylan
Cover of the book Advances in Operations Research Education by Hatice Boylan
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy