IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials

Proceedings of the IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials, held in Freiberg, Germany, September 1-4, 2009

Nonfiction, Science & Nature, Science, Physics, Mechanics, Mathematics, Applied, Technology
Cover of the book IUTAM Symposium on Multiscale Modelling of Fatigue, Damage and Fracture in Smart Materials by , Springer Netherlands
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9789048198870
Publisher: Springer Netherlands Publication: November 12, 2010
Imprint: Springer Language: English
Author:
ISBN: 9789048198870
Publisher: Springer Netherlands
Publication: November 12, 2010
Imprint: Springer
Language: English

Today, multi-functional materials such as piezoelectric/ferroelectric ceramics, magneto-strictive and shape memory alloys are gaining increasing applications as sensors, actuators or smart composite materials systems for emerging high tech areas. The stable performance and reliability of these smart components under complex service loads is of paramount practical importance. However, most multi-functional materials suffer from various mechanical and/or electro-magnetical degra-dation mechanisms as fatigue, damage and fracture. Therefore, this exciting topic has become a challenge to intensive international research, provoking the interdisciplinary approach between solid mechanics, materials science and physics. This book summarizes the outcome of the above mentioned IUTAM-symposium, assembling contributions by leading scientists in this area. Particularly, the following topics have been addressed: (1) Development of computational methods for coupled electromechanical field analysis, especially extended, adaptive and multi-level finite elements. (2) Constitutive modeling of non-linear smart material behavior with coupled electric, magnetic, thermal and mechanical fields, primarily based on micro-mechanical models. (3) Investigations of fracture and fatigue in piezoelectric and ferroelectric ceramics by means of process zone modeling, phase field simulation and configurational mechanics. (4) Reliability and durability of sensors and actuators under in service loading by alternating mechanical, electrical and thermal fields. (5) Experimental methods to measure fracture strength and to investigate fatigue crack growth in ferroelectric materials under electromechanical loading. (6) New ferroelectric materials, compounds and composites with enhanced strain capabilities.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

Today, multi-functional materials such as piezoelectric/ferroelectric ceramics, magneto-strictive and shape memory alloys are gaining increasing applications as sensors, actuators or smart composite materials systems for emerging high tech areas. The stable performance and reliability of these smart components under complex service loads is of paramount practical importance. However, most multi-functional materials suffer from various mechanical and/or electro-magnetical degra-dation mechanisms as fatigue, damage and fracture. Therefore, this exciting topic has become a challenge to intensive international research, provoking the interdisciplinary approach between solid mechanics, materials science and physics. This book summarizes the outcome of the above mentioned IUTAM-symposium, assembling contributions by leading scientists in this area. Particularly, the following topics have been addressed: (1) Development of computational methods for coupled electromechanical field analysis, especially extended, adaptive and multi-level finite elements. (2) Constitutive modeling of non-linear smart material behavior with coupled electric, magnetic, thermal and mechanical fields, primarily based on micro-mechanical models. (3) Investigations of fracture and fatigue in piezoelectric and ferroelectric ceramics by means of process zone modeling, phase field simulation and configurational mechanics. (4) Reliability and durability of sensors and actuators under in service loading by alternating mechanical, electrical and thermal fields. (5) Experimental methods to measure fracture strength and to investigate fatigue crack growth in ferroelectric materials under electromechanical loading. (6) New ferroelectric materials, compounds and composites with enhanced strain capabilities.

More books from Springer Netherlands

Cover of the book Gerard Van Swieten and His World 1700–1772 by
Cover of the book Drug Use in Pregnancy: Mother and Child by
Cover of the book The Polarization Method of Seismic Exploration by
Cover of the book Radiation Proteomics by
Cover of the book Basement Tectonics 7 by
Cover of the book Modern Literature and the Death of God by
Cover of the book Electrocardiography and Cardiac Drug Therapy by
Cover of the book Mixture and Chemical Combination by
Cover of the book Methodology for Genetic Studies of Twins and Families by
Cover of the book Glucagon in Gastroenterology by
Cover of the book Coral Reefs at the Crossroads by
Cover of the book Mental Health in South Asia: Ethics, Resources, Programs and Legislation by
Cover of the book Legal Argumentation Theory: Cross-Disciplinary Perspectives by
Cover of the book Nature and Technology in the World Religions by
Cover of the book A Theodicy of Hell by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy