Introduction to Computation and Programming Using Python

With Application to Understanding Data

Nonfiction, Computers, Programming, Programming Languages, General Computing
Cover of the book Introduction to Computation and Programming Using Python by John V. Guttag, The MIT Press
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: John V. Guttag ISBN: 9780262337397
Publisher: The MIT Press Publication: August 8, 2016
Imprint: The MIT Press Language: English
Author: John V. Guttag
ISBN: 9780262337397
Publisher: The MIT Press
Publication: August 8, 2016
Imprint: The MIT Press
Language: English

The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization.

This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters.

Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The new edition of an introductory text that teaches students the art of computational problem solving, covering topics ranging from simple algorithms to information visualization.

This book introduces students with little or no prior programming experience to the art of computational problem solving using Python and various Python libraries, including PyLab. It provides students with skills that will enable them to make productive use of computational techniques, including some of the tools and techniques of data science for using computation to model and interpret data. The book is based on an MIT course (which became the most popular course offered through MIT's OpenCourseWare) and was developed for use not only in a conventional classroom but in in a massive open online course (MOOC). This new edition has been updated for Python 3, reorganized to make it easier to use for courses that cover only a subset of the material, and offers additional material including five new chapters.

Students are introduced to Python and the basics of programming in the context of such computational concepts and techniques as exhaustive enumeration, bisection search, and efficient approximation algorithms. Although it covers such traditional topics as computational complexity and simple algorithms, the book focuses on a wide range of topics not found in most introductory texts, including information visualization, simulations to model randomness, computational techniques to understand data, and statistical techniques that inform (and misinform) as well as two related but relatively advanced topics: optimization problems and dynamic programming. This edition offers expanded material on statistics and machine learning and new chapters on Frequentist and Bayesian statistics.

More books from The MIT Press

Cover of the book The Resilient Enterprise by John V. Guttag
Cover of the book The Largest Art by John V. Guttag
Cover of the book How Reform Worked in China by John V. Guttag
Cover of the book Listening in the Field by John V. Guttag
Cover of the book The Rationality Quotient by John V. Guttag
Cover of the book Neural Control of Speech by John V. Guttag
Cover of the book How Smart Machines Think by John V. Guttag
Cover of the book The Well-Played Game by John V. Guttag
Cover of the book The Least Likely Man by John V. Guttag
Cover of the book How Things Shape the Mind by John V. Guttag
Cover of the book Monetary Theory and Policy by John V. Guttag
Cover of the book Civic Ecology by John V. Guttag
Cover of the book The Boundaries of Babel by John V. Guttag
Cover of the book Giving a Damn by John V. Guttag
Cover of the book A Prehistory of the Cloud by John V. Guttag
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy