International Space Station (ISS) Systems Engineering Case Study: History and Development of the Station, Hardware and Software, Anomaly Resolution, Russian Participation

Nonfiction, Science & Nature, Technology, Aeronautics & Astronautics, Science, Physics, Astrophysics & Space Science
Cover of the book International Space Station (ISS) Systems Engineering Case Study: History and Development of the Station, Hardware and Software, Anomaly Resolution, Russian Participation by Progressive Management, Progressive Management
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: Progressive Management ISBN: 9781476168883
Publisher: Progressive Management Publication: July 18, 2012
Imprint: Smashwords Edition Language: English
Author: Progressive Management
ISBN: 9781476168883
Publisher: Progressive Management
Publication: July 18, 2012
Imprint: Smashwords Edition
Language: English

This case study on the International Space Station considers what many believe to have been the ultimate international engineering project in history. The initial plans involved the direct participation of 16 nations, 88 launches and over 160 spacewalks—more space activities than NASA had accomplished prior to the 1993 International Space Station decision. Probably more important was the significant leap in System Engineering (SE) execution that would be required to build and operate a multi-national space station. In a short period of time, NASA and its partners had to work out how to integrate culturally different SE approaches, designs, languages and operational perspectives on risk and safety.

The International Council on Systems Engineering (INCOSE) defines Systems Engineering (SE) as an "interdisciplinary approach and means to enable the realization of successful systems. It focuses on defining customer needs and required functionality early in the development cycle, documenting requirements, and then proceeding with design synthesis and system validation while considering the complete problem: operations, performance, test, manufacturing, cost and schedule, training and support, and disposal."

One of the objectives of the Air Force Center for Systems Engineering (AFCSE) is to develop case studies focusing on the application of systems engineering principles within various aerospace programs. The intent of these case studies is to examine a broad spectrum of program types and a variety of learning principles using the Friedman-Sage Framework to guide overall analysis.

These cases support practitioners of systems engineering and are also used in the academic instruction in systems engineering within military service academies and at both civilian and military graduate schools.

SYSTEMS ENGINEERING PRINCIPLES * General Systems Engineering Process * Case Studies * Framework for Analysis * ISS Major Learning Principles and Friedman-Sage Matrix * Historical Background * Soviet Space Stations * Skylab * Space Station Freedom * Shuttle-Mir Program * Space Station Freedom Redesign * Budget * Studies/Review Panels * Changes from SSF to ISS * NASA Systems Engineering Environment * NASA Management Approach * NASA Center Approaches * System Engineers and the Experience Chain * Systems Engineering Challenges of the ISS * Systems Engineering Process * International Partners * Safety/Risk approaches * FULL SCALE DEVELOPMENT * Major ISS Modules * Zarya Control Module * Unity Node * Zvezda Service Module * Destiny Laboratory Module * Canadian Space Robotics System * Quest Joint Airlock * Russian Pirs Docking Compartment * Columbus Laboratory * Kibo Japanese Experimental Laboratory * Cupola * Russian Multi-Purpose Laboratory Module * Multi-Purpose Logistics Module * Launch Services * Shuttle * Russian Vehicles * Japanese Projects * European Projects * Commercial Capabilities * Development Challenges * Technology Readiness and Obsolescence * Use of Probabilistic Risk Assessment * Russian Contribution and Risk * Spiral Construction Approach and Multi-configuration issues * Computer Hardware and Software * Power Systems * Micrometeoroid and Orbital Debris (MMOD) Protection * Test and Integration * Execution Issues * Unrealistic Estimates for Cost and Schedule * Iran, North Korea, and Syria Nonproliferation Act * ISS Logistical Support * Handling a Major Computer Failure * Transportation * Anomaly Resolution and the Columbia Accident * Major Risks to the ISS * Long Term Outlook * Lessons Learned * ACRONYMS * SPACELAB MISSIONS * PHASE ONE—SHUTTLE-MIR MISSIONS * MISSION SUMMARIES

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This case study on the International Space Station considers what many believe to have been the ultimate international engineering project in history. The initial plans involved the direct participation of 16 nations, 88 launches and over 160 spacewalks—more space activities than NASA had accomplished prior to the 1993 International Space Station decision. Probably more important was the significant leap in System Engineering (SE) execution that would be required to build and operate a multi-national space station. In a short period of time, NASA and its partners had to work out how to integrate culturally different SE approaches, designs, languages and operational perspectives on risk and safety.

The International Council on Systems Engineering (INCOSE) defines Systems Engineering (SE) as an "interdisciplinary approach and means to enable the realization of successful systems. It focuses on defining customer needs and required functionality early in the development cycle, documenting requirements, and then proceeding with design synthesis and system validation while considering the complete problem: operations, performance, test, manufacturing, cost and schedule, training and support, and disposal."

One of the objectives of the Air Force Center for Systems Engineering (AFCSE) is to develop case studies focusing on the application of systems engineering principles within various aerospace programs. The intent of these case studies is to examine a broad spectrum of program types and a variety of learning principles using the Friedman-Sage Framework to guide overall analysis.

These cases support practitioners of systems engineering and are also used in the academic instruction in systems engineering within military service academies and at both civilian and military graduate schools.

SYSTEMS ENGINEERING PRINCIPLES * General Systems Engineering Process * Case Studies * Framework for Analysis * ISS Major Learning Principles and Friedman-Sage Matrix * Historical Background * Soviet Space Stations * Skylab * Space Station Freedom * Shuttle-Mir Program * Space Station Freedom Redesign * Budget * Studies/Review Panels * Changes from SSF to ISS * NASA Systems Engineering Environment * NASA Management Approach * NASA Center Approaches * System Engineers and the Experience Chain * Systems Engineering Challenges of the ISS * Systems Engineering Process * International Partners * Safety/Risk approaches * FULL SCALE DEVELOPMENT * Major ISS Modules * Zarya Control Module * Unity Node * Zvezda Service Module * Destiny Laboratory Module * Canadian Space Robotics System * Quest Joint Airlock * Russian Pirs Docking Compartment * Columbus Laboratory * Kibo Japanese Experimental Laboratory * Cupola * Russian Multi-Purpose Laboratory Module * Multi-Purpose Logistics Module * Launch Services * Shuttle * Russian Vehicles * Japanese Projects * European Projects * Commercial Capabilities * Development Challenges * Technology Readiness and Obsolescence * Use of Probabilistic Risk Assessment * Russian Contribution and Risk * Spiral Construction Approach and Multi-configuration issues * Computer Hardware and Software * Power Systems * Micrometeoroid and Orbital Debris (MMOD) Protection * Test and Integration * Execution Issues * Unrealistic Estimates for Cost and Schedule * Iran, North Korea, and Syria Nonproliferation Act * ISS Logistical Support * Handling a Major Computer Failure * Transportation * Anomaly Resolution and the Columbia Accident * Major Risks to the ISS * Long Term Outlook * Lessons Learned * ACRONYMS * SPACELAB MISSIONS * PHASE ONE—SHUTTLE-MIR MISSIONS * MISSION SUMMARIES

More books from Progressive Management

Cover of the book The Wind and Beyond: A Documentary Journey into the History of Aerodynamics in America, Volume 1 - The Ascent of the Airplane by Progressive Management
Cover of the book The X-43A Flight Research Program: Lessons Learned on the Road to Mach 10 - Hyper-X (HXRV), Hypersonic Scramjet, National Aero-Space Plane (NASP), HySTP, Dan Goldin, Fullerton by Progressive Management
Cover of the book Europe's Dependence on Russian Natural Gas: Perspectives and Recommendations for a Long-term Strategy, Putin, Politics, and Gazprom, Ukraine, Diversification Options by Progressive Management
Cover of the book Burma (Myanmar) in Perspective - Orientation Guide and Burmese Cultural Orientation: Geography, History, Economy, Society, Security, Military, Religion, Rangoon, Mandalay, Theravada Buddhism by Progressive Management
Cover of the book 2011 Pocket Guide to Federal Grants and Government Assistance Programs for Organizations, Small Business, and Individuals by Progressive Management
Cover of the book Chinese Military: Federal Strategic Perspective Reports - Military Transparency, PLA's Role in Elite Politics, Out of Area Naval Operations, China's Quest for Advanced Military Aviation Technologies by Progressive Management
Cover of the book Pearl Harbor Encyclopedia: December 7, 1941 - Day of Infamy, Japan Plans, Detailed Attack Information, Controversies, FDR and World War II, USS Arizona Memorial, Oral Histories by Progressive Management
Cover of the book History's Role in Operational Design and Planning: How Germany's Failed Invasion Provides Insight into U.S. and Chinese Perspectives on Anti-Access Area Denial A2AD - China's Strategy and Capabilities by Progressive Management
Cover of the book Ukraine in Perspective: Orientation Guide and Cultural Orientation: Geography, History, Economy, Society, Security, Religion, Traditions, Urban and Rural Life, Crimea, Ethnic Groups, Military by Progressive Management
Cover of the book Social Movements and Social Media: Surveillance and Unintended Consequences - Case Studies of ISIS and Black Lives Matter (BLM), Examination of U.S. Surveillance Policy, Inhibition of Social Progress by Progressive Management
Cover of the book Assessment Report: Causes and Predictability of the 2011-14 California Drought - NOAA Drought Task Force - Climate Change Global Warming Contribution, Data, Simulations, Winter Precipitation, SST by Progressive Management
Cover of the book 21st Century Ultimate Guide to Wind Energy: Wind Power Systems, Turbines, Small Wind Consumer Guide, Incentives for Development, Low and Large Wind, Plans and Programs, Siting and Other Issues by Progressive Management
Cover of the book U.S. Army Medical Correspondence Course: Management of Patients With Respiratory Dysfunctions - Respiratory System, Devices to Aid Breathing, Administering Oxygen, Suctioning by Progressive Management
Cover of the book Dead on Arrival? The Development of the Aerospace Concept, 1944-58: Space Age After Sputnik, Debates About Aerospace, Truman and Eisenhower, Air Force, ORDCIT, von Braun, von Karman, Schriever by Progressive Management
Cover of the book Military Unmanned Aerial Systems (UAS) and the Department of Defense Report to Congress on Addressing Challenges for Unmanned Aircraft Systems by Progressive Management
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy