Intangible Life

Functorial Connections in Relational Biology

Nonfiction, Religion & Spirituality, Philosophy, Reference, Science & Nature, Mathematics, Applied, Science
Cover of the book Intangible Life by A.H. Louie, Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: A.H. Louie ISBN: 9783319654096
Publisher: Springer International Publishing Publication: December 5, 2017
Imprint: Springer Language: English
Author: A.H. Louie
ISBN: 9783319654096
Publisher: Springer International Publishing
Publication: December 5, 2017
Imprint: Springer
Language: English

This rare publication continues an exploratory journey in relational biology, a study of biology in terms of the organization of networked connections in living systems. It builds on the author’s two earlier monographs which looked at the epistemology of life and the ontogeny of life. Here the emphasis is on the intangibility of life, that the real nature of living systems is conveyed not by their tangible material basis but by their intangible inherent processes. 

 

Relational biology is the approach that hails ‘function dictates structure’; it is mathematics decoded into biological realizations. Therefore, the work begins with a concise introduction to category theory, equiping the reader with the mathematical metalanguage of relation biology. The book is organized around three parts:

 

Part I is a comprehensive study of the most important functor in relational biology, the power set functor.  The author lays the s

et-theoretic foundations of the functorial connections in relational biology, exploring relations, mappings, and set-valued mappings.

 

In Part II, Natural Law receives a new mathematical formulation founded on two axioms: ‘Everything is a set.’ and ‘Every process is a set-valued mapping.’ The reader sees how Metabolism–Repair networks, equipped with set-valued processors, expand their role from models of biological entities to generic models of all natural systems.  

 

Part III expounds the various shades of invertibility in general, and the inversion of encoding to decoding in particular.  A plethora of mathematical and biological examples illustrate the category-theoretic concepts of equivalence and adjunction.

 

This book's algebraic approach to biological models will appeal to researchers and graduate students in mathematics, biology, and the philosophy of science.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

This rare publication continues an exploratory journey in relational biology, a study of biology in terms of the organization of networked connections in living systems. It builds on the author’s two earlier monographs which looked at the epistemology of life and the ontogeny of life. Here the emphasis is on the intangibility of life, that the real nature of living systems is conveyed not by their tangible material basis but by their intangible inherent processes. 

 

Relational biology is the approach that hails ‘function dictates structure’; it is mathematics decoded into biological realizations. Therefore, the work begins with a concise introduction to category theory, equiping the reader with the mathematical metalanguage of relation biology. The book is organized around three parts:

 

Part I is a comprehensive study of the most important functor in relational biology, the power set functor.  The author lays the s

et-theoretic foundations of the functorial connections in relational biology, exploring relations, mappings, and set-valued mappings.

 

In Part II, Natural Law receives a new mathematical formulation founded on two axioms: ‘Everything is a set.’ and ‘Every process is a set-valued mapping.’ The reader sees how Metabolism–Repair networks, equipped with set-valued processors, expand their role from models of biological entities to generic models of all natural systems.  

 

Part III expounds the various shades of invertibility in general, and the inversion of encoding to decoding in particular.  A plethora of mathematical and biological examples illustrate the category-theoretic concepts of equivalence and adjunction.

 

This book's algebraic approach to biological models will appeal to researchers and graduate students in mathematics, biology, and the philosophy of science.

More books from Springer International Publishing

Cover of the book Oral Mucosa in Health and Disease by A.H. Louie
Cover of the book Negotiating the EU’s 2030 Climate and Energy Framework by A.H. Louie
Cover of the book Atlas of Upper Extremity Trauma by A.H. Louie
Cover of the book Intelligent Computer Mathematics by A.H. Louie
Cover of the book Seismic Data Interpretation and Evaluation for Hydrocarbon Exploration and Production by A.H. Louie
Cover of the book Animal Models of Acute Neurological Injury by A.H. Louie
Cover of the book Landscapes and Landforms of Italy by A.H. Louie
Cover of the book Queering Childhood in Early Modern English Drama and Culture by A.H. Louie
Cover of the book Health Risks and Fair Compensation in the Fire Service by A.H. Louie
Cover of the book Human Interference on River Health by A.H. Louie
Cover of the book Production of Ethanol from Sugarcane in Brazil by A.H. Louie
Cover of the book Metadata and Semantic Research by A.H. Louie
Cover of the book Convergence Estimates in Approximation Theory by A.H. Louie
Cover of the book The Life and Death of a Treaty by A.H. Louie
Cover of the book Biodiversity and Evolution of Parasitic Life in the Southern Ocean by A.H. Louie
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy