Homological Mirror Symmetry and Tropical Geometry

Nonfiction, Science & Nature, Mathematics, Geometry
Cover of the book Homological Mirror Symmetry and Tropical Geometry by , Springer International Publishing
View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart
Author: ISBN: 9783319065144
Publisher: Springer International Publishing Publication: October 7, 2014
Imprint: Springer Language: English
Author:
ISBN: 9783319065144
Publisher: Springer International Publishing
Publication: October 7, 2014
Imprint: Springer
Language: English

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.

View on Amazon View on AbeBooks View on Kobo View on B.Depository View on eBay View on Walmart

The relationship between Tropical Geometry and Mirror Symmetry goes back to the work of Kontsevich and Y. Soibelman (2000), who applied methods of non-archimedean geometry (in particular, tropical curves) to Homological Mirror Symmetry. In combination with the subsequent work of Mikhalkin on the “tropical” approach to Gromov-Witten theory and the work of Gross and Siebert, Tropical Geometry has now become a powerful tool. Homological Mirror Symmetry is the area of mathematics concentrated around several categorical equivalences connecting symplectic and holomorphic (or algebraic) geometry. The central ideas first appeared in the work of Maxim Kontsevich (1993). Roughly speaking, the subject can be approached in two ways: either one uses Lagrangian torus fibrations of Calabi-Yau manifolds (the so-called Strominger-Yau-Zaslow picture, further developed by Kontsevich and Soibelman) or one uses Lefschetz fibrations of symplectic manifolds (suggested by Kontsevich and further developed by Seidel). Tropical Geometry studies piecewise-linear objects which appear as “degenerations” of the corresponding algebro-geometric objects.

More books from Springer International Publishing

Cover of the book The Evolution of the Chilean-Argentinean Andes by
Cover of the book Policy Analysis of Structural Reforms in Higher Education by
Cover of the book Sociability, Social Capital, and Community Development by
Cover of the book Nanomaterials for Fuel Cell Catalysis by
Cover of the book Public Opinion on Economic Globalization by
Cover of the book Technology and the Treatment of Children with Autism Spectrum Disorder by
Cover of the book Use of Economic Instruments in Water Policy by
Cover of the book X-Ray Lasers 2012 by
Cover of the book Congenital Heart Disease in Pediatric and Adult Patients by
Cover of the book To Be Born by
Cover of the book L’Hôpital's Analyse des infiniments petits by
Cover of the book Strain Variation in the Mycobacterium tuberculosis Complex: Its Role in Biology, Epidemiology and Control by
Cover of the book Hydrogen Production and Remediation of Carbon and Pollutants by
Cover of the book Computational Science and Its Applications – ICCSA 2018 by
Cover of the book Hospital-Based Health Technology Assessment by
We use our own "cookies" and third party cookies to improve services and to see statistical information. By using this website, you agree to our Privacy Policy